小學(xué)五年級(jí)奧數(shù)題帶余數(shù)的除法練習(xí)題及答案【六篇】
時(shí)間:2017-09-11 13:28:00 來源:無憂考網(wǎng) [字體:小 中 大]【第一篇】
一個(gè)兩位數(shù)去除251,得到的余數(shù)是41.求這個(gè)兩位數(shù)。
分析 這是一道帶余除法題,且要求的數(shù)是大于41的兩位數(shù).解題可從帶余除式入手分析。
解:∵被除數(shù)÷除數(shù)=商…余數(shù),
即被除數(shù)=除數(shù)×商+余數(shù),
∴251=除數(shù)×商+41,
251-41=除數(shù)×商,
∴210=除數(shù)×商。
∵210=2×3×5×7,
∴210的兩位數(shù)的約數(shù)有10、14、15、21、30、35、42、70,其中42和70大于余數(shù)41.所以除數(shù)是42或70.即要求的兩位數(shù)是42或70。
【第二篇】
用一個(gè)自然數(shù)去除另一個(gè)整數(shù),商40,余數(shù)是16.被除數(shù)、除數(shù)、商數(shù)與余數(shù)的和是933,求被除數(shù)和除數(shù)各是多少?
解:∵被除數(shù)=除數(shù)×商+余數(shù),
即被除數(shù)=除數(shù)×40+16。
由題意可知:被除數(shù)+除數(shù)=933-40-16=877,
∴(除數(shù)×40+16)+除數(shù)=877,
∴除數(shù)×41=877-16,
除數(shù)=861÷41,
除數(shù)=21,
∴被除數(shù)=21×40+16=856。
答:被除數(shù)是856,除數(shù)是21。
【第三篇】
某年的十月里有5個(gè)星期六,4個(gè)星期日,問這年的10月1日是星期幾?
解:十月份共有31天,每周共有7天,
∵31=7×4+3,
∴根據(jù)題意可知:有5天的星期數(shù)必然是星期四、星期五和星期六。
∴這年的10月1日是星期四。
【第四篇】
3月18日是星期日,從3月17日作為第一天開始往回?cái)?shù)(即3月16日(第二天),15日(第三天),…)的第1993天是星期幾?
解:每周有7天,1993÷7=284(周)…5(天),
從星期日往回?cái)?shù)5天是星期二,所以第1993天必是星期二.
【第五篇】
一個(gè)數(shù)除以3余2,除以5余3,除以7余2,求適合此條件的最小數(shù)。
這是一道古算題.它早在《孫子算經(jīng)》中記有:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”
關(guān)于這道題的解法,在明朝就流傳著一首解題之歌:“三人同行七十稀,五樹梅花廿一枝,七子團(tuán)圓正半月,除百零五便得知.”意思是,用除以3的余數(shù)乘以70,用除以5的余數(shù)乘以21,用除以7的余數(shù)乘以15,再把三個(gè)乘積相加.如果這三個(gè)數(shù)的和大于105,那么就減去105,直至小于105為止.這樣就可以得到滿足條件的解.其解法如下:
方法1:2×70+3×21+2×15=233
233-105×2=23
符合條件的最小自然數(shù)是23。
【第六篇】
一個(gè)數(shù)除以5余3,除以6余4,除以7余1,求適合條件的最小的自然數(shù)。
分析 “除以5余3”即“加2后被5整除”,同樣“除以6余4”即“加2后被6整除”。
解:[5,6]-2=28,即28適合前兩個(gè)條件。
想:28+[5,6]×?之后能滿足“7除余1”的條件?
28+[5,6]×4=148,148=21×7+1,
又148<210=[5,6,7]
所以,適合條件的最小的自然數(shù)是148。