国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

六年級小學奧數題:容斥原理問題

時間:2016-01-21 15:18:00   來源:無憂考網     [字體: ]
容斥原理問題:(高等難度)

在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)只解出第一題的學生比余下的學生中解出第一題的人數多1人;(4)只解出一道題的學生中,有一半沒有解出第一題,那么只解出第二題的學生人數是( )

容斥原理問題答案:

根據“每個人至少答出三題中的一道題”可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。

分別設各類的人數為a1、a2、a3、a12、a13、a23、a123

由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①

由(2)知:a2+a23=(a3+ a23)×2……②

由(3)知:a12+a13+a123=a1-1……③

由(4)知:a1=a2+a3……④

再由②得a23=a2-a3×2……⑤

再由③④得a12+a13+a123=a2+a3-1⑥

然后將④⑤⑥代入①中,整理得到

a2×4+a3=26

由于a2、a3均表示人數,可以求出它們的整數解:

當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22

又根據a23=a2-a3×2……⑤可知:a2>a3

因此,符合條件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。

故只解出第二題的學生人數a2=6人。