国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

小學(xué)奧數(shù)計(jì)數(shù)之歸納法練習(xí)精選

時(shí)間:2014-02-27 11:15:00   來(lái)源:無(wú)憂考網(wǎng)     [字體: ]
這篇《小學(xué)奧數(shù)計(jì)數(shù)之歸納法練習(xí)精選》,是©無(wú)憂考網(wǎng)特地為大家整理的,希望對(duì)大家有所幫助!
1.用數(shù)學(xué)歸納法證明"當(dāng)n為正偶數(shù)為xn-yn能被x+y整除"第一步應(yīng)驗(yàn)證n=__________時(shí),命題成立;第二步歸納假設(shè)成立應(yīng)寫(xiě)成_____________________.

  2. 數(shù)學(xué)歸納法證明3能被14整除的過(guò)程中,當(dāng)n=k+1時(shí),3應(yīng)變形為_(kāi)___________________.

  3. 數(shù)學(xué)歸納法證明 1+3+9+…+3

  4.求證 n能被9整除.

  答案:

  1. x2k-y2k能被x+y整除

  因?yàn)閚為正偶數(shù),故第一值n=2,第二步假設(shè)n取第k個(gè)正偶數(shù)成立,即n=2k,故應(yīng)假設(shè)成x2k-y2k能被x+y整除.

  2.25(34k+2+52k+1)+56·32k+2

  當(dāng)n=k+1時(shí),34(k+1)+2+52(k+1)+1=81·34k+2+25·52k+1=25(34k2+52k+1)+56·33k+2

  3.證明(1)當(dāng)n=1時(shí),左=1,右=(31-1)=1,命題成立.

  (2)假設(shè)n=k時(shí),命題成立,即:1+3+9+…3k-1=(3k-1),則當(dāng)n=k+1時(shí),1+3+9+…+3k-1+3k=(3k-1)+3k=(3k+1-1),即n=k+1命題成立.

  4.證明(1)當(dāng)n=1時(shí),13+(1+1)3+(1+2)3=36能被9整除.

  (2)假設(shè)n=k時(shí)成立即:k3+(k+1)3+(k+2)3能被9整除,當(dāng)k=n+1時(shí)

  (k+1)3+(k+2)3+(k+3)3= k3+(k+1)3+(k+2)3+9k2+9k+27= k3+(k+1)3+(k+2)3+9(k2+k+3)能被9整除

  由(1),(2)可知原命題成立.