1.小學(xué)五年級(jí)數(shù)學(xué)奧數(shù)題 篇一
1、765×213÷27+765×327÷27解:原式=765÷27×(213+327)=765÷27×540=765×20=15300
2、(9999+9997+…+9001)-(1+3+…+999)
解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+……+9000(500個(gè)9000)
=4500000
3、19981999×19991998-19981998×19991999
解:(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000
4、(873×477-198)÷(476×874+199)
解:873×477-198=476×874+199
因此原式=1
5、2000×1999-1999×1998+1998×1997-1997×1996+…+2×1
解:原式=1999×(2000-1998)+1997×(1998-1996)+…
+3×(4-2)+2×1
。剑1999+1997+…+3+1)×2=2000000
2.小學(xué)五年級(jí)數(shù)學(xué)奧數(shù)題 篇二
1、一件工作甲做6時(shí)、乙做12時(shí)可完成,甲做8時(shí)、乙做6時(shí)也可以完成。如果甲做3時(shí)后由乙接著做,那么還需多少時(shí)間才能完成?解:甲做2小時(shí)的等于乙做6小時(shí)的,所以乙單獨(dú)做需要
6*3+12=30(小時(shí))甲單獨(dú)做需要10小時(shí)
因此乙還需要(1-3/10)/(1/30)=21天才可以完成。
2、有一批待加工的零件,甲單獨(dú)做需4天,乙單獨(dú)做需5天,如果兩人合作,那么完成任務(wù)時(shí)甲比乙多做了20個(gè)零件。這批零件共有多少個(gè)?
解:甲和乙的工作時(shí)間比為4:5,所以工作效率比是5:4
工作量的比也5:4,把甲做的看作5份,乙做的看作4份
那么甲比乙多1份,就是20個(gè)。因此9份就是180個(gè)
所以這批零件共180個(gè)
3、挖一條水渠,甲、乙兩隊(duì)合挖要6天完成。甲隊(duì)先挖3天,乙隊(duì)接著
解:根據(jù)條件,甲挖6天乙挖2天可挖這條水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙單獨(dú)挖需要10天。
甲單獨(dú)挖需要1/(1/6-1/10)=15天。
3.小學(xué)五年級(jí)數(shù)學(xué)奧數(shù)題 篇三
1、一位少年短跑選手,順風(fēng)跑90米用了10秒鐘。在同樣的風(fēng)速下,逆風(fēng)跑70米,也用了10秒鐘。問:在無風(fēng)的時(shí)候,他跑100米要用多少秒?答案與解析:
順風(fēng)時(shí)速度=90÷10=9(米/秒),逆風(fēng)時(shí)速度=70÷10=7(米/秒)
無風(fēng)時(shí)速度=(9+7)×1/2=8(米/秒),無風(fēng)時(shí)跑100米需要100÷8=12。5(秒)
2、李明、王寧、張虎三個(gè)男同學(xué)都各有一個(gè)妹妹,六個(gè)人在一起打羽毛球,舉行混合雙打比賽。事先規(guī)定。兄妹二人不許搭伴。第一盤,李明和小華對(duì)張虎和小紅;第二盤,張虎和小林對(duì)李明和王寧的妹妹。請(qǐng)你判斷,小華、小紅和小林各是誰的妹妹。
解答:因?yàn)閺埢⒑托〖t、小林都搭伴比賽,根據(jù)已知條件,兄妹二人不許搭伴,所以張虎的妹妹不是小紅和小林,那么只能是小華,剩下就只有兩種可能了。第一種可能是:李明的妹妹是小紅,王寧的妹妹是小林;第二種可能是:李明的妹妹是小林,王寧的妹妹是小紅。對(duì)于第一種可能,第二盤比賽是張虎和小林對(duì)李明和王寧的妹妹。王寧的妹妹是小林,這樣就是張虎、李明和小林三人打混合雙打,不符合實(shí)際,所以第一種可能是不成立的,只有第二種可能是合理的。所以判斷結(jié)果是:張虎的妹妹是小華;李明的妹妹是小林;王寧的妹妹是小紅。
4.小學(xué)五年級(jí)數(shù)學(xué)奧數(shù)題 篇四
1、甲乙兩個(gè)水管單獨(dú)開,注滿一池水,分別需要20小時(shí),16小時(shí)。丙水管單獨(dú)開,排一池水要10小時(shí),若水池沒水,同時(shí)打開甲乙兩水管,5小時(shí)后,再打開排水管丙,問水池注滿還需要多少小時(shí)?2、修一條水渠,單獨(dú)修,甲隊(duì)需要20天完成,乙隊(duì)需要30天完成。如果兩隊(duì)合作,由于彼此施工有影響,他們的工作效率就要降低,甲隊(duì)的工作效率是原來的五分之四,乙隊(duì)工作效率只有原來的十分之九,F(xiàn)在計(jì)劃16天修完這條水渠,且要求兩隊(duì)合作的天數(shù)盡可能少,那么兩隊(duì)要合作幾天?
3、一件工作,甲、乙合做需4小時(shí)完成,乙、丙合做需5小時(shí)完成,F(xiàn)在先請(qǐng)甲、丙合做2小時(shí)后,余下的乙還需做6小時(shí)完成。乙單獨(dú)做完這件工作要多少小時(shí)?
4、一項(xiàng)工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那么恰好用整數(shù)天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那么完工時(shí)間要比前一種多半天。已知乙單獨(dú)做這項(xiàng)工程需17天完成,甲單獨(dú)做這項(xiàng)工程要多少天完成?
5、一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
5.小學(xué)五年級(jí)數(shù)學(xué)奧數(shù)題 篇五
1、小華在8點(diǎn)到9點(diǎn)之間開始解一道題,當(dāng)時(shí)時(shí)針、分針正好成一直線,解完題時(shí)兩針正好第一次重合。問:小明解這道題用了多長(zhǎng)時(shí)間?2、甲、乙、丙三人行路,甲每分鐘走60米,乙每分鐘走50米,丙每分鐘走40米。甲從A地,乙和丙從B地同時(shí)出發(fā)相向而行,甲和乙相遇后,過了15分鐘又與丙相遇,求A、B兩地間的距離。
3、甲、乙、丙是一條路上的三個(gè)車站,乙站到甲、丙兩站的距離相等,小強(qiáng)和小明同時(shí)分別從甲、丙兩站出發(fā)相向而行,小強(qiáng)經(jīng)過乙站100米時(shí)與小明相遇,然后兩人又繼續(xù)前進(jìn),小強(qiáng)走到丙站立即返回,經(jīng)過乙站300米時(shí)又追上小明,問:甲、乙兩站的距離是多少米?
4、甲、乙、丙三人進(jìn)行200米賽跑,當(dāng)甲到終點(diǎn)時(shí),乙離終點(diǎn)還有20米,丙離終點(diǎn)還有25米,如果甲、乙、丙賽跑的速度都不變,那么當(dāng)乙到達(dá)終點(diǎn)時(shí),丙離終點(diǎn)還有多少米?
5、甲、乙二人分別從A、B兩地同時(shí)出發(fā),如果兩人同向而行,甲26分鐘趕上乙;如果兩人相向而行,6分鐘可相遇,又已知乙每分鐘行50米,求A、B兩地的距離。
- 小學(xué)六年級(jí)奧數(shù)練習(xí)及答案解析大全
- 五年級(jí)小學(xué)生奧數(shù)作業(yè)題及答案
- 小學(xué)生奧數(shù)行程問題、合理分組練習(xí)題及答案
- 小學(xué)生奧數(shù)作業(yè)題及答案大全(20篇)
- 小升初奧數(shù)練習(xí)題及答案大全
- 小學(xué)生奧數(shù)合理分組、差倍問題、巧求周長(zhǎng)練習(xí)題及答案
- 小學(xué)生奧數(shù)平均數(shù)問題、植樹問題、盈虧問題練習(xí)題及答
- 小學(xué)生奧數(shù)倍數(shù)問題、分解質(zhì)因數(shù)、簡(jiǎn)單推理練習(xí)題及答