小學(xué)六年級(jí)奧數(shù)題答案分析(下冊(cè))
時(shí)間:2018-11-26 13:33:00 來(lái)源:無(wú)憂(yōu)考網(wǎng) [字體:小 中 大]
【篇一】
(周期問(wèn)題)
a÷7化成小數(shù)后,小數(shù)點(diǎn)后至少多少個(gè)數(shù)字之和是2008,這時(shí)a是多少?
解:分母是7的分?jǐn)?shù)化成小數(shù)的特點(diǎn)是,都是由123857這六個(gè)數(shù)字組成的無(wú)限循環(huán)小數(shù),并且根據(jù)分子的不同,其排列順序是首尾相接循環(huán),只是位置不同。比如:
1÷7=0.142857142857142857…
2÷7=0.285714285714285713…
也就是說(shuō),不論分子是幾,其小數(shù)表示的一個(gè)循環(huán)節(jié)中數(shù)字和是相同的,即每一循環(huán)節(jié)的數(shù)字和都是1+4+2+8+5+7=27,根據(jù)題意,2008中有74個(gè)27,且余10,那么循環(huán)節(jié)中相鄰數(shù)字之和為10的只有2和8,即a=2。
答:根據(jù)題意,a是2。
(位值原理)
在5678這個(gè)數(shù)的前面或后面添寫(xiě)一個(gè)2,所得到的兩個(gè)五位數(shù)都能被2整除。現(xiàn)在請(qǐng)找出一個(gè)三位數(shù)添寫(xiě)在5678的前面或后面,使所得的兩個(gè)七位數(shù)都能被這個(gè)三位數(shù)整除。滿(mǎn)足題意的三位數(shù)有哪幾個(gè)?
解:分析后得5678這個(gè)數(shù)一定能被這個(gè)三位數(shù)整除,先計(jì)算出5678的質(zhì)因數(shù):
即5678的質(zhì)因數(shù)除了1外還有2、17和167,那么符合要求的三位數(shù)有167、334。
答:滿(mǎn)足題意的三位數(shù)有167和334。
在10000以?xún)?nèi),除以3余2,除以7余3,除以11余4的數(shù)有幾個(gè)?
答案與解析:滿(mǎn)足"除以3余2"的數(shù)有5,8,11,14,17,20,23,…
再滿(mǎn)足"除以7余3"的數(shù)有17,38,59,80,101,…
再滿(mǎn)足"除以11余4"的數(shù)有59。
因?yàn)殛?yáng)[3,7,11]=231,所以符合題意的數(shù)是以59為首項(xiàng),公差是231的等差數(shù)列。(10000-59)÷231=43……8,所以在10000以?xún)?nèi)符合題意的數(shù)共有44個(gè)。
【篇二】
有一個(gè)布袋中有40個(gè)相同的小球,其中編上號(hào)碼1、2、3、4的各有10個(gè),問(wèn):一次至少要取出多少個(gè)小球,才能保證其中至少有3個(gè)小球的號(hào)碼相同?
答案與解析:
將1、2、3、4四種號(hào)碼看作4個(gè)抽屜,要保證一個(gè)抽屜中至少有3個(gè)蘋(píng)果,最"壞"的情況是每個(gè)抽屜里有2個(gè)"蘋(píng)果",共有:4×2=8(個(gè)),再取1個(gè)就能滿(mǎn)足要求,所以一次至少要取出9個(gè)小球,才能保證其中至少有3個(gè)小球的號(hào)碼相同.
甲、乙、丙都在讀同-一本故事書(shū),書(shū)中有100個(gè)故事.每個(gè)人都從某一個(gè)故事開(kāi)始,按順序往后讀.已知甲讀了7.5個(gè)故事,乙讀了60個(gè)故事,丙讀了52個(gè)故事.那么甲、乙、丙3人共同讀過(guò)的故事最少有多少個(gè)?
答案與解析:
只考慮甲乙兩人情況,有甲、乙都讀過(guò)的最少為:75+60-100=35個(gè),此時(shí)甲單獨(dú)讀過(guò)的為75-35=40個(gè),乙單獨(dú)讀過(guò)的為60-35=25個(gè);
欲使甲、乙、丙三人都讀過(guò)的書(shū)最少時(shí),應(yīng)將丙讀過(guò)的書(shū)盡量分散在某端,于是三者都讀過(guò)書(shū)最少為52-40=12個(gè).
用一個(gè)兩位數(shù)除330,結(jié)果正好能整除。請(qǐng)寫(xiě)出所有可能的兩位數(shù)
答案與解析:
330=2*3*5*11,所以能整除的是330的約數(shù)。330的兩位約數(shù)有:10,11,15,22,33,55,30,66
22.5-(□×32-24×□)÷3.2=10在上面算式的兩個(gè)方框中填入相同的數(shù),使得等式成立。那么所填的數(shù)應(yīng)是多少?
答案與解析:22.5-(□×32-24×□)÷3.2
=22.5-□×(32-24)÷3.2
=22.5-□×8÷3.2
=22.5-□×2.5
因?yàn)?2.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10)÷2.5=5
答:所填的數(shù)應(yīng)是5。
【篇三】
將一個(gè)四位數(shù)的數(shù)字順序顛倒過(guò)來(lái),得到一個(gè)新的四位數(shù)。如果新數(shù)比原數(shù)大7992,那么所有符合這樣條件的四位數(shù)中原數(shù)的是_____。
答案與解析:
設(shè)原數(shù)為,則由題意有下式成立,
根據(jù)千位加法可知a=1或2。當(dāng)a=2時(shí)由個(gè)位的加法知d=0,不合題意。所以a=1。由個(gè)位的加法知d=9。由十位的加法可知b=c。所以符合題意的的四位數(shù)為1999。
甲、乙、丙三人中有一人是牧師,一人是騙子,一人是賭棍.牧師只說(shuō)真話(huà),騙子只說(shuō)假話(huà),賭棍有時(shí)說(shuō)真話(huà)有時(shí)說(shuō)假話(huà).甲說(shuō):“丙是牧師.”乙說(shuō):“甲是賭棍.”丙說(shuō):“乙是騙子.”那么請(qǐng)問(wèn)甲、乙、丙三人各是什么職業(yè)?
答案與解析:
甲是賭棍,乙是牧師,丙是騙子
牧師說(shuō)真話(huà),不可能說(shuō)別人是牧師,因此甲一定不是牧師.若乙是牧師,則甲一定是賭棍,那么丙就是騙子,符合題意.若丙是牧師,則乙就是賭棍,甲是騙子,此時(shí)甲不可能說(shuō)出“丙是牧師”這句真話(huà),因此矛盾.
提示:這是一道邏輯推理的試題,重點(diǎn)中學(xué)的考試中很愿意考這樣的題型,解答這類(lèi)問(wèn)題時(shí)首先要從所給的條件中理清各部分之間的關(guān)系,然后進(jìn)行分析推理,排除一些不可能的情況,逐步歸納,找到正確的答案。
甲乙兩列火車(chē)同時(shí)從東西兩城相向開(kāi)出,甲車(chē)每小時(shí)行49千米,乙車(chē)每小時(shí)行47千米,相遇時(shí)甲車(chē)比乙車(chē)多行36千米.求兩城之間的路程.
答案與解析:36÷(49-47)×(49+47)=1728(千米).
一位少年短跑選手,順風(fēng)跑90米用了10秒鐘.在同樣的風(fēng)速下,逆風(fēng)跑70米,也用了10秒鐘.問(wèn):在無(wú)風(fēng)的時(shí)候,他跑100米要用多少秒?
答案與解析:
順風(fēng)時(shí)速度=90÷10=9(米/秒),逆風(fēng)時(shí)速度=70÷10=7(米/秒)
無(wú)風(fēng)時(shí)速度=(9+7)×1/2=8(米/秒),無(wú)風(fēng)時(shí)跑100米需要100÷8=12.5(秒)