国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

小學(xué)六年級(jí)奧數(shù)題:容斥原理問(wèn)題

時(shí)間:2015-09-28 15:55:00   來(lái)源:無(wú)憂(yōu)考網(wǎng)     [字體: ]
容斥原理問(wèn)題:(高等難度)

在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學(xué)生參加競(jìng)賽,每個(gè)學(xué)生至少解出一道題;(2)在所有沒(méi)有解出第一題的學(xué)生中,解出第二題的人數(shù)是解出第三題的人數(shù)的2倍:(3)只解出第一題的學(xué)生比余下的學(xué)生中解出第一題的人數(shù)多1人;(4)只解出一道題的學(xué)生中,有一半沒(méi)有解出第一題,那么只解出第二題的學(xué)生人數(shù)是( )

容斥原理問(wèn)題答案:

根據(jù)“每個(gè)人至少答出三題中的一道題”可知答題情況分為7類(lèi):只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。

分別設(shè)各類(lèi)的人數(shù)為a1、a2、a3、a12、a13、a23、a123

由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①

由(2)知:a2+a23=(a3+ a23)×2……②

由(3)知:a12+a13+a123=a1-1……③

由(4)知:a1=a2+a3……④

再由②得a23=a2-a3×2……⑤

再由③④得a12+a13+a123=a2+a3-1⑥

然后將④⑤⑥代入①中,整理得到

a2×4+a3=26

由于a2、a3均表示人數(shù),可以求出它們的整數(shù)解:

當(dāng)a2=6、5、4、3、2、1時(shí),a3=2、6、10、14、18、22

又根據(jù)a23=a2-a3×2……⑤可知:a2>a3

因此,符合條件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,總?cè)藬?shù)=8+6+2+7+2=25,檢驗(yàn)所有條件均符。

故只解出第二題的學(xué)生人數(shù)a2=6人。