【#初中二年級# #初二數(shù)學(xué)期中上冊知識點#】雖然在學(xué)習(xí)的過程中會遇到許多不順心的事,但古人說得好——吃一塹,長一智。多了一次失敗,就多了一次教訓(xùn);多了一次挫折,就多了一次經(jīng)驗。沒有失敗和挫折的人,是永遠(yuǎn)不會成功的。本篇文章是©無憂考網(wǎng)為您整理的《初二數(shù)學(xué)期中上冊知識點》,供大家借鑒。
1.初二數(shù)學(xué)期中上冊知識點
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
2.初二數(shù)學(xué)期中上冊知識點
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點
(1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。
3.初二數(shù)學(xué)期中上冊知識點
角形
一、知識框架:
知識概念:
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13、公式與性質(zhì):
、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為180°
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
、嵌噙呅蝺(nèi)角和公式:邊形的內(nèi)角和等于·180°
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°。
⑸多邊形對角線的條數(shù):
、購倪呅蔚囊粋頂點出發(fā)可以引條對角線,把多邊形分成個三角形。
、谶呅喂灿袟l對角線。
4.初二數(shù)學(xué)期中上冊知識點
軸對稱
一、知識框架:
二、知識概念:
1、基本概念:
、泡S對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱。
、蔷段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。
2、基本性質(zhì):
⑴對稱的性質(zhì):
、俨还苁禽S對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點所連線段的垂直平分線。
、趯ΨQ的圖形都全等。
、凭段垂直平分線的性質(zhì):
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
、谂c一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
5.初二數(shù)學(xué)期中上冊知識點
整式的乘除與因式分解
1、同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點:
、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;
②指數(shù)是1時,不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
④當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為正數(shù));
、莨竭可以逆用:(m、n均為正整數(shù))
2、冪的乘方與積的乘方
※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
※2、底數(shù)有負(fù)號時,運(yùn)算時要注意,底數(shù)是a與(—a)時不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。
※3、底數(shù)有時形式不同,但可以化成相同。
※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※5、積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
※6、冪的乘方與積乘方法則均可逆向運(yùn)用。
3、整式的乘法
※(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項式乘法法則在運(yùn)用時要注意以下幾點:
①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
、谙嗤帜赶喑,運(yùn)用同底數(shù)的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;
、軉雾検匠朔ǚ▌t對于三個以上的單項式相乘同樣適用;
、輪雾検匠艘詥雾検,結(jié)果仍是一個單項式。
※(2)單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
、賳雾検脚c多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;
、谶\(yùn)算時要注意積的符號,多項式的每一項都包括它前面的符號;
、墼诨旌线\(yùn)算時,要注意運(yùn)算順序。
※(3)多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
、俣囗検脚c多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應(yīng)等于原兩個多項式項數(shù)的積;
②多項式相乘的結(jié)果應(yīng)注意合并同類項;
、蹖型粋字母的一次項系數(shù)是1的兩個一次二項式相乘,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得。