九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)
時(shí)間:2022-03-10 17:00:00 來(lái)源:無(wú)憂(yōu)考網(wǎng) [字體:小 中 大]【#初中三年級(jí)# #九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)#】要想取得好的學(xué)習(xí)成績(jī),必須要有良好的學(xué)習(xí)習(xí)慣。習(xí)慣是經(jīng)過(guò)重復(fù)練習(xí)而鞏固下來(lái)的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)習(xí)慣,就會(huì)使自己學(xué)習(xí)感到有序而輕松。以下是©無(wú)憂(yōu)考網(wǎng)為您整理的《九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)》,供大家查閱。
1.九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)
一、能正確理解實(shí)數(shù)的有關(guān)概念
我們已經(jīng)知道整數(shù)和統(tǒng)稱(chēng)為。并規(guī)定無(wú)限不循環(huán)是無(wú)理數(shù),這樣我們把有理數(shù)和無(wú)理數(shù)統(tǒng)稱(chēng)為實(shí)數(shù),即實(shí)數(shù)這個(gè)大家庭里有有理數(shù)和無(wú)理數(shù)兩大成員。學(xué)習(xí)時(shí)應(yīng)注意分清有理數(shù)和無(wú)理數(shù)是兩類(lèi)完全不同的數(shù),就是說(shuō)如果一個(gè)數(shù)是有理數(shù),那么它一定不是無(wú)理數(shù),反之,如果一個(gè)數(shù)是無(wú)理數(shù),那么它一定不是有理數(shù)。
二、正確理解實(shí)數(shù)的分類(lèi)
實(shí)數(shù)的分類(lèi)可從兩個(gè)角度去思考,即(1)按定義來(lái)分類(lèi);(2)按正、來(lái)分類(lèi)。但要注意0在實(shí)數(shù)里也扮演著重要角色.我們通常把正實(shí)數(shù)和0合稱(chēng)為非負(fù)數(shù),把負(fù)實(shí)數(shù)和0合稱(chēng)為非正數(shù)。
三、正確理解實(shí)數(shù)與數(shù)軸的關(guān)系
實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,就是說(shuō)所有的實(shí)數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示;反之,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù)。數(shù)軸上的任一點(diǎn)表示的數(shù),是有理數(shù),就是無(wú)理數(shù)。
在數(shù)軸上,表示相反數(shù)的兩個(gè)點(diǎn)在原點(diǎn)的兩旁,并且兩點(diǎn)到原點(diǎn)的距離相等.實(shí)數(shù)a的絕對(duì)值就是在數(shù)軸上這個(gè)數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離。
利用數(shù)軸可以比較任意兩個(gè)實(shí)數(shù)的大小,即在數(shù)軸上表示的兩個(gè)實(shí)數(shù),絕對(duì)值大的反而小。
四、熟練掌握實(shí)數(shù)的有關(guān)性質(zhì)
實(shí)數(shù)和有理數(shù)一樣也有許多的重要性質(zhì).具體地講可從以下幾方面去思考:
1、相反數(shù)實(shí)數(shù)a的相反數(shù)是-a,0的相反數(shù)是0,具體地,若a與b互為相反數(shù),則a+b=0;反之,若a+b=0,則a與b互為相反數(shù)。
2、絕對(duì)值一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0.實(shí)數(shù)a的絕對(duì)值可表示就是說(shuō)實(shí)數(shù)a的絕對(duì)值一定是一個(gè)非負(fù)數(shù)。
3、倒數(shù)乘積為1的兩個(gè)實(shí)數(shù)互為倒數(shù),即若a與b互為倒數(shù),則ab=1;反之,若ab=1,則a與b互為倒數(shù).這里應(yīng)特別注意的是0沒(méi)有倒數(shù)。
4、實(shí)數(shù)大小的比較任意兩個(gè)實(shí)數(shù)都可以比較大小,正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小。
5、實(shí)數(shù)的運(yùn)算實(shí)數(shù)的運(yùn)算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實(shí)數(shù)既可以進(jìn)行加、減、乘、除、乘方運(yùn)算,又可以進(jìn)行開(kāi)方運(yùn)算,其中正實(shí)數(shù)可以開(kāi)平方.在進(jìn)行實(shí)數(shù)運(yùn)算時(shí),和有理數(shù)運(yùn)算一樣,要從高級(jí)到低級(jí),即先算乘方、開(kāi)方,再算乘除,最后算加減,有括號(hào)的要先算括號(hào)里面的,同級(jí)運(yùn)算要按照從左到右的順序進(jìn)行.另外,有理數(shù)的運(yùn)算律在實(shí)數(shù)范圍內(nèi)仍然適用。
2.九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
(4)正方形是軸對(duì)稱(chēng)圖形,有4條對(duì)稱(chēng)軸;
(5)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形;
(6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。
3、正方形的判定
(1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
3.九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)
一、圓周角定理
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
①定理有三方面的意義:
a.圓心角和圓周角在同一個(gè)圓或等圓中;(相關(guān)知識(shí)點(diǎn)如何證明四點(diǎn)共圓)
b.它們對(duì)著同一條弧或者對(duì)的兩條弧是等弧
c.具備a、b兩個(gè)條件的圓周角都是相等的,且等于圓心角的一半.
②因?yàn)閳A心角的度數(shù)與它所對(duì)的弧的度數(shù)相等,所以圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半.
二、圓周角定理的推論
推論1:同弧或等弧所對(duì)的圓周角相等,同圓或等圓中,相等的圓周角所對(duì)的弧也相等
推論2:半圓(或直徑)所對(duì)的圓周角等于90°;90°的圓周角所對(duì)的弦是直徑
推論3:如果三角形一邊的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
三、推論解釋說(shuō)明
圓周角定理在九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)中屬于幾何部分的重要內(nèi)容。
、偻普1是圓中證明角相等最常用的方法,若將推論1中的“同弧或等弧”改為“同弦或等弦”結(jié)論就不成立.因?yàn)橐粭l弦所對(duì)的圓周角有兩個(gè).
②推論2中“相等的圓周角所對(duì)的弧也相等”的前提條件是“在同圓或等圓中”
、蹐A周角定理的推論2的應(yīng)用非常廣泛,要把直徑與90°圓周角聯(lián)系起來(lái),一般來(lái)說(shuō),當(dāng)條件中有直徑時(shí),通常會(huì)作出直徑所對(duì)的圓周角,從而得到直角三角形,為進(jìn)一步解題創(chuàng)造條件
、芡普3實(shí)質(zhì)是直角三角形的斜邊上的中線等于斜邊的一半的逆定理.
4.九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)
不等式的概念
1、不等式:用不等號(hào)表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。
3、對(duì)于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡(jiǎn)稱(chēng)這個(gè)不等式的解集。
4、求不等式的解集的過(guò)程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。
2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號(hào)的方向不變。
3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
4、說(shuō)明:①在一元一次不等式中,不像等式那樣,等號(hào)是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號(hào)改為等號(hào)所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號(hào)3移項(xiàng)4合并同類(lèi)項(xiàng)5將x項(xiàng)的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過(guò)程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說(shuō)這個(gè)不等式組無(wú)解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個(gè)不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。
6、不等式與不等式組
不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
③求不等式解集的過(guò)程叫做解不等式。
5.九年級(jí)數(shù)學(xué)上冊(cè)期中知識(shí)點(diǎn)
1.數(shù)的分類(lèi)及概念數(shù)系表:
說(shuō)明:分類(lèi)的原則:1)相稱(chēng)(不重、不漏)2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:x0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):①定義及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aC.0
4.相反數(shù):①定義及表示法
②性質(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義(三要素)
、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。