【第一篇】
例7 在一條筆直的公路上,每隔10千米建有一個糧站。一號糧站存有10噸糧食,2號糧站存有20噸糧食,3號糧站存有30噸糧食,4號糧站是空的,5號糧站存有40噸糧食,F(xiàn)在要把全部糧食集中放在一個糧站里,如果每噸1千米的運費是0.5元,那么糧食集中到第幾號糧站所用的運費最少(圖3-3)?(適于五年級程度)
解:看圖3-3,可以斷定糧食不能集中在1號和2號糧站。
下面將運到3號、4號、5號糧站時所用的運費一一列舉,并比較。
(1)如果運到3號糧站,所用運費是:
0.5×10×(10+10)+0.5×20×10+0.5×40×(10+10)
=100+100+400
=600(元)
(2)如果運到4號糧站,所用運費是:
0.5×10×(10+10+10)+0.5×20×(10+10)+0.5×30×10+0.5×40×10
=150+200+150+200
=700(元)
(3)如果運到5號糧站,所用費用是:
0.5×10×(10+10+10+10)+0.5×20×(10+10+10)+0.5×30×(10+10)
=200+300+300
=800(元)
800>700>600
答:集中到第三號糧站所用運費最少。
【第二篇】
例8 小明有10個1分硬幣,5個2分硬幣,2個5分硬幣。要拿出1角錢買1支鉛筆,問可以有幾種拿法?用算式表達出來。(適于五年級程度)
解:(1)只拿出一種硬幣的方法:
、偃1分的:
1+1+1+1+1+1+1+1+1+1=1(角)
、谌2分的:
2+2+2+2+2=1(角)
③全拿5分的:
5+5=1(角)
只拿出一種硬幣,有3種方法。
。2)只拿兩種硬幣的方法:
、倌8枚1分的,1枚2分的:
1+1+1+1+1+1+1+1+2=1(角)
、谀6枚1分的,2枚2分的:
1+1+1+1+1+1+2+2=1(角)
、勰4枚1分的,3枚2分的:
1+1+1+1+2+2+2=1(角)
④拿2枚1分的,4枚2分的:
1+1+2+2+2+2=1(角)
、菽5枚1分的,1枚5分的:
1+1+1+1+1+5=1(角)
只拿出兩種硬幣,有5種方法。
。3)拿三種硬幣的方法:
、倌3枚1分,1枚2分,1枚5分的:
1+1+1+2+5=1(角)
、谀1枚1分,2枚2分,1枚5分的:
1+2+2+5=1(角)
拿出三種硬幣,有2種方法。
共有:
3+5+2=10(種)
答:共有10種拿法。
【第三篇】
例9 甲、乙、丙、丁與小強五位同學一起比賽象棋,每兩人都要比賽一盤。到現(xiàn)在為止,甲賽了4盤,乙賽了3盤,丙賽了2盤,丁賽了1盤。問小強賽了幾盤?(適于五年級程度)
解:作表3-2。
表3-2
甲已經(jīng)賽了4盤,就是甲與乙、丙、丁、小強各賽了一盤,在甲與乙、丙、丁、小強相交的那些格里都打上√;乙賽的盤數(shù),就是除了與甲賽的那一盤,又與丙和小強各賽一盤,在乙與丙、小強相交的那兩個格中都打上√;丙賽了兩盤,就是丙與甲、乙各賽一盤,打上√;丁與甲賽的那一盤也打上√。
丁未與乙、丙、小強賽過,在丁與乙、丙與小強相交的格中都畫上圈。
根據(jù)條件分析,填完表格以后,可明顯地看出,小強與甲、乙各賽一盤,未與丙、丁賽,共賽2盤。
答:小強賽了2盤。