【#小學(xué)奧數(shù)# #小學(xué)六年級(jí)奧數(shù)多人行程問題及答案#】天高鳥飛,海闊魚躍,學(xué)習(xí)這舞臺(tái),秀出你獨(dú)特的精彩用好分秒時(shí)間,積累點(diǎn)滴知識(shí),解決疑難問題,學(xué)會(huì)舉一反三。以下是®無憂考網(wǎng)為大家整理的《小學(xué)六年級(jí)奧數(shù)多人行程問題及答案》 供您查閱。
【題一】
有人沿公路前進(jìn),對(duì)面來了一輛汽車,他問司機(jī):“后面有自行車嗎?”司機(jī)回答:“十分鐘前我超過一輛自行車”,這人繼續(xù)走了十分鐘,遇到自行車,已知自行車速度是人步行速度的三倍,問汽車的速度是步行速度的()倍.
考點(diǎn):多次相遇問題.
分析:人遇見汽車的時(shí)候,離自行車的路程是:(汽車速度-自行車速度)×10,這么長(zhǎng)的路程要自行車和人合走了10分鐘,即:(自行車+步行)×10,等式:(汽車速度-自行車速度)×10=(自行車+步行)×10,即:汽車速度-自行車速度=自行車速度+步行速度.汽車速度=2×自行車速度+步行速度,又自行車的速度是步行的3倍,所以汽車速度是步行的7倍.
解答:(汽車速度-自行車速度)×10=(自行車+步行)×10,
即:汽車速度-自行車速度=自行車速度+步行速度.
汽車速度=2×自行車速度+步行,又自行車的速度是步行的3倍,
所以汽車速度=(2×3+1)×步行速度=步行速度×7.
故答案為:7.
點(diǎn)評(píng):解答此題的關(guān)鍵是要推出:汽車與自行車的速度差等于人與自行車的速度和.
【題二】
1.甲乙丙三個(gè)小分隊(duì)都從A地到B地進(jìn)行野外訓(xùn)練,上午6時(shí),甲乙兩個(gè)小隊(duì)一起從A地出發(fā),甲隊(duì)每小時(shí)走5千米,乙隊(duì)每小時(shí)走4千米,丙隊(duì)上午8時(shí)才從A地出發(fā),傍晚6時(shí),甲丙兩隊(duì)同時(shí)到達(dá)B地,那么丙隊(duì)追上乙隊(duì)的時(shí)間是上午()時(shí).
分析:從上午6時(shí)到下午6時(shí)共經(jīng)過12小時(shí),則A、B兩地的距離為5×12=60千米,丙上午8時(shí)出發(fā),則全程比甲少用8時(shí)-6時(shí)=2小時(shí),所以丙的速度為每小時(shí)60÷(12-2)=6千米.由于丙出發(fā)時(shí),乙已行了4×2=8千米,兩人的速度差為每小時(shí)6-4=2千米,則丙追上乙需要8÷2=4小時(shí),所以丙追上乙的時(shí)間是8時(shí)+4小時(shí)=12時(shí).
解答:解:6時(shí)+6時(shí)=12時(shí),8時(shí)-6時(shí)=2時(shí);
5×12÷(12-2)
=60÷10,
=6(千米);
2×4÷(6-4)
=8÷2,
=4(小時(shí)).
8時(shí)+4小時(shí)=12時(shí).
即丙在上午12時(shí)追上乙.
故答案為:12.
點(diǎn)評(píng):首先根據(jù)甲的速度及所用時(shí)間求出兩地的距離進(jìn)而求出丙的速度是完成本題的關(guān)鍵.
【題三】
1.甲乙丙三個(gè)小分隊(duì)都從A地到B地進(jìn)行野外訓(xùn)練,上午6時(shí),甲乙兩個(gè)小隊(duì)一起從A地出發(fā),甲隊(duì)每小時(shí)走5千米,乙隊(duì)每小時(shí)走4千米,丙隊(duì)上午8時(shí)才從A地出發(fā),傍晚6時(shí),甲丙兩隊(duì)同時(shí)到達(dá)B地,那么丙隊(duì)追上乙隊(duì)的時(shí)間是上午()時(shí).
分析:從上午6時(shí)到下午6時(shí)共經(jīng)過12小時(shí),則A、B兩地的距離為5×12=60千米,丙上午8時(shí)出發(fā),則全程比甲少用8時(shí)-6時(shí)=2小時(shí),所以丙的速度為每小時(shí)60÷(12-2)=6千米.由于丙出發(fā)時(shí),乙已行了4×2=8千米,兩人的速度差為每小時(shí)6-4=2千米,則丙追上乙需要8÷2=4小時(shí),所以丙追上乙的時(shí)間是8時(shí)+4小時(shí)=12時(shí).
解答:解:6時(shí)+6時(shí)=12時(shí),8時(shí)-6時(shí)=2時(shí);
5×12÷(12-2)
=60÷10,
=6(千米);
2×4÷(6-4)
=8÷2,
=4(小時(shí)).
8時(shí)+4小時(shí)=12時(shí).
即丙在上午12時(shí)追上乙.
故答案為:12.