0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口! a|越大,則拋物線的開口越小! Q定對稱軸位置的因素  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置! ‘(dāng)a與b同號時(..." />

国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

9年級下冊數(shù)學(xué)復(fù)習(xí)提綱蘇教版

時間:2017-05-22 15:41:00   來源:無憂考網(wǎng)     [字體: ]
3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  決定對稱軸位置的因素

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左; 因為若對稱軸在左邊則對稱軸小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同號

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要異號

  可簡單記憶為左同右異,即當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab< 0 ),對稱軸在y軸右。

  事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值。可通過對二次函數(shù)求導(dǎo)得到。

  決定拋物線與y軸交點的因素

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  拋物線與x軸交點個數(shù)

  6.拋物線與x軸交點個數(shù)

  Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

  _______

  Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  當(dāng)a>0時,函數(shù)在x= -b/2a處取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是減函數(shù),在

  {x|x>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變

  當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax^2+c(a≠0)

  特殊值的形式

  7.特殊值的形式

 、佼(dāng)x=1時 y=a+b+c

  ②當(dāng)x=-1時 y=a-b+c

 、郛(dāng)x=2時 y=4a+2b+c

  ④當(dāng)x=-2時 y=4a-2b+c

  二次函數(shù)的性質(zhì)

  8.定義域:R

  值域:(對應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)①[(4ac-b^2)/4a,

  正無窮);②[t,正無窮)

  奇偶性:當(dāng)b=0時為偶函數(shù),當(dāng)b≠0時為非奇非偶函數(shù)。

  周期性:無

  解析式:

 、賧=ax^2+bx+c[一般式]

 、臿≠0

 、芶>0,則拋物線開口朝上;a<0,則拋物線開口朝下;

 、菢O值點:(-b/2a,(4ac-b^2)/4a);

 、圈=b^2-4ac,

  Δ>0,圖象與x軸交于兩點:

  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

  Δ=0,圖象與x軸交于一點:

  (-b/2a,0);

  Δ<0,圖象與x軸無交點;

 、趛=a(x-h)^2+k[頂點式]

  此時,對應(yīng)極值點為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

 、踶=a(x-x1)(x-x2)[交點式(雙根式)](a≠0)

  對稱軸X=(X1+X2)/2 當(dāng)a>0 且X≧(X1+X2)/2時,Y隨X的增大而增大,當(dāng)a>0且X≦(X1+X2)/2時Y隨X

  的增大而減小

  此時,x1、x2即為函數(shù)與X軸的兩個交點,將X、Y代入即可求出解析式(一般與一元二次方程連

  用)。

  交點式是Y=A(X-X1)(X-X2) 知道兩個x軸交點和另一個點坐標(biāo)設(shè)交點式。兩交點X值就是相應(yīng)X1 X2值。

  26.2 用函數(shù)觀點看一元二次方程

  1. 如果拋物線 與x軸有公共點,公共點的橫坐標(biāo)是 ,那么當(dāng) 時,函數(shù)的值是0,因此 就是方程的一個根。

  2. 二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

  26.3 實際問題與二次函數(shù)

  在日常生活、生產(chǎn)和科研中,求使材料最省、時間最少、效率等問題,有些可歸結(jié)為求二次函數(shù)的值或最小值。