【#初中三年級# #九年級下冊數(shù)學期中考試重點#】學習時集中精力,養(yǎng)成良好學習習慣,是節(jié)省學習時間和提高學習效率的最為基本的方法。©無憂考網(wǎng)搜集的《九年級下冊數(shù)學期中考試重點》,希望對同學們有幫助。
1.九年級下冊數(shù)學期中考試重點
1.隨機試驗
確定性現(xiàn)象:在自然界中一定發(fā)生的現(xiàn)象稱為確定性現(xiàn)象。
隨機現(xiàn)象:在個別實驗中呈現(xiàn)不確定性,在大量實驗中呈現(xiàn)統(tǒng)計規(guī)律性,這種現(xiàn)象稱為隨機現(xiàn)象。
隨機試驗:為了研究隨機現(xiàn)象的統(tǒng)計規(guī)律而做的的實驗就是隨機試驗。隨機試驗的特點:
1)可以在相同條件下重復(fù)進行;
2)每次試驗的可能結(jié)果不止一個,并且能事先明確試驗的所有可能結(jié)果;
3)進行一次試驗之前不能確定哪一個結(jié)果會先出現(xiàn);
2.樣本空間、隨機事件
樣本空間:我們將隨機試驗E的所有可能結(jié)果組成的集合稱為E的樣本空間,記為S。樣本點:構(gòu)成樣本空間的元素,即E中的每個結(jié)果,稱為樣本點。事件之間的基本關(guān)系:包含、相等、和事件(并)、積事件(交)、差事件(A-B:包含A不包含B)、互斥事件(交集是空集,并集不一定是全集)、對立事件(交集是空集,并集是全集,稱為對立事件)。事件之間的運算律:交換律、結(jié)合律、分配率、摩根定理(通過韋恩圖理解這些定理)
3.頻率與概率
頻數(shù):事件A發(fā)生的次數(shù)頻率:頻數(shù)/總數(shù)
概率:當重復(fù)試驗的次數(shù)n逐漸增大,頻率值就會趨于某一穩(wěn)定值,這個值就是概率。概率的特點:1)非負性。2)規(guī)范性。3)可列可加性。
概率性質(zhì):1)P(空集)=0,2)有限可加性,3)加法公式:P(A+B)=P(A)+P(B)-P(AB)
4.古典概型
學會利用排列組合的知識求解一些簡單問題的概率(彩票問題,超幾何分布,分配問題,插空問題,捆 綁問題等等)
5.條件概率
定義:A事件發(fā)生條件下B發(fā)生的概率P(B|A)=P(AB)/P(A)乘法公式:P(AB)=P(B|A)P(A)全概率公式與貝葉斯公式
6.獨立性檢驗
設(shè)A、B是兩事件,如果滿足等式P(AB)=P(A)P(B)則稱事件A、B相互獨立,簡稱A、B獨立。
2.九年級下冊數(shù)學期中考試重點
一、投影
1.投影:一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。
2.平行投影:由平行光線形成的投影是平行投影。(光源特別遠)
3.中心投影:由同一點(點光源發(fā)出的光線)形成的投影叫做中心投影
4.正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關(guān)。
5.當物體的某個面平行于投影面時,這個面的正投影與這個面的形狀、大小完全相同。當物體的某個面頂斜于投影面時,這個面的正投影變小。當物體的某個面垂直于投影面時,這個面的正投影成為一條直線。
二、三視圖
1.三視圖:是觀測者從三個不同位置(正面、水平面、側(cè)面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達物體的結(jié)構(gòu)。
2.主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖。
3.俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。
4.左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖。
5.三個視圖的位置關(guān)系:
①主視圖在上、俯視圖在下、左視圖在右;
②主視、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。
、壑饕、俯視長對正,主視、左視高平齊,左視、俯視寬相等。
6.畫法:看得見的部分的輪廓線畫成實線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。
3.九年級下冊數(shù)學期中考試重點
一、銳角三角函數(shù)
1.正弦:在rt△abc中,銳角∠a的對邊a與斜邊的比叫做∠a的正弦,記作sina,即sina=∠a的對邊/斜邊=a/c;
2.余弦:在rt△abc中,銳角∠a的鄰邊b與斜邊的比叫做∠a的余弦,記作cosa,即cosa=∠a的鄰邊/斜邊=b/c;
3.正切:在rt△abc中,銳角∠a的對邊與鄰邊的比叫做∠a的正切,記作tana,即tana=∠a的對邊/∠a的鄰邊=a/b。
、賢ana是一個完整的符號,它表示∠a的正切,記號里習慣省去角的符號“∠”;
、趖ana沒有單位,它表示一個比值,即直角三角形中∠a的對邊與鄰邊的比;
、踭ana不表示“tan”乘以“a”;
、躷ana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。
4、余切:定義:在rt△abc中,銳角∠a的鄰邊與對邊的比叫做∠a的余切,記作cota,即cota=∠a的鄰邊/∠a的對邊=b/a;
5、一個銳角的正弦、余弦、正切、余切分別等于它的余角的余弦、正弦、余切、正切。(通常我們稱正弦、余弦互為余函數(shù)。同樣,也稱正切、余切互為余函數(shù),可以概括為:一個銳角的三角函數(shù)等于它的余角的余函數(shù))用等式表達:
若∠a為銳角,則①sina=cos(90°∠a)等等。
6、記住特殊角的三角函數(shù)值表0°,30°,45°,60°,90°。
7、當角度在0°~90°間變化時,正弦值、正切值隨著角度的增大(或減小)而增大(或減小);余弦值、余切值隨著角度的增大(或減小)而減小(或增大)。0≤sinα≤1,0≤cosα≤1。
同角的三角函數(shù)間的關(guān)系:
tanα·cotα=1,
tanα=sinα/cosα,
cotα=cosα/sinα,sin2α+cos2α=1
二、解直角三角形
1.解直角三角形:在直角三角形中,由已知元素求未知元素的過程。
2.在解直角三角形的過程中用到的關(guān)系:(在△abc中,∠c為直角,∠a、∠b、∠c所對的邊分別為a、b、c,)
。1)三邊之間的關(guān)系:a2+b2=c2;(勾股定理)
。2)兩銳角的關(guān)系:∠a+∠b=90°;
。3)邊與角之間的關(guān)系:
sina=a/c;
cosa=b/c;
tana=a/b。
sina=cosb
cosa=sinb
sina=cos(90°-a)
sin2α+cos2α=1
4.九年級下冊數(shù)學期中考試重點
圓
1、確定圓的條件:圓心→位置,半徑→大小。
2、和圓有關(guān)的概念:弦---直徑,弧—半圓、優(yōu)弧、劣弧,圓心角,圓周角,弦心距。
3、圓的對稱性:圓既是軸對稱圖形,又是中心對稱圖形。
4、垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
5、圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,弦的弦心距相等。
引申:在這四組量中,只要有一組量對應(yīng)相等,其余各組量都相等。
6、圓周角定理:①圓周角等于同弧所對的圓心角的一半,
②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;相等的圓周角所對的弧相等,
、郯雸A(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
7、內(nèi)心和外心:①內(nèi)心是三角形內(nèi)角平分線的交點,它到三角形三邊的距離相等。
、谕庑氖侨切稳叴怪逼椒志的交點,它到三角形三個頂點的距離相等。
8、直線和圓的位置關(guān)系:相交→d
9、切線的判定:“有點連圓心”→證垂直!盁o點做垂線”→證d=r。
切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑。
10、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
11、圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補,每一個外角等于它的內(nèi)對角。
12、圓外切四邊形的性質(zhì):圓外切四邊形的對邊之和相等。
13、圓和圓的位置關(guān)系:外離→d>R+r.外切→d=R+r.相交→R-r
14、正多邊形和圓:半徑→外接圓的半徑,中心角→每一邊所對的圓心角,邊心距→中心到一邊的距離。
15、弧長和扇形面積:L=n∏R/180.S扇形=n∏R2/360.
16、圓錐的側(cè)面積和全面積:圓錐的.母線長=扇形的半徑,圓錐底面圓周長=扇形弧長,圓錐的側(cè)面積=扇形面積,圓錐的全面積=扇形面積+底面圓面積。
5.九年級下冊數(shù)學期中考試重點
一元二次方程
1、定義:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
①是整式方程,②未知數(shù)的次數(shù)是二次,③只含有一個未知數(shù),④二次項系數(shù)不為零。
2、化為一元二次方程的一般形式:按降冪排列,二次項系數(shù)通常為正,右端為零。
3、一元二次方程的根:代入使方程成立。
4、一元二次方程的解法:
、倥浞椒ǎ阂祈棥雾椣禂(shù)化為一→兩邊同時加上一次項系數(shù)的一半→配方→開方→寫出方程的解。
、诠椒ǎ簒=(-b±√b2-4ac)/2a,
、垡蚴椒纸夥ǎ河叶藶榱,左端分解為兩個因式的乘積。
5、一元二次方程的根的判別式①當△>0時,方程有兩個不相等的實數(shù)根
、诋敗=0時,方程有兩個相等的實數(shù)根,③當△<0時,方程沒有實數(shù)根。
注意:應(yīng)用的前提條件是:a≠0.
6、一元二次方程根與系數(shù)的關(guān)系:x1+x2=-b/a,x1*x2=c/a.
注意:應(yīng)用的前提條件是:a≠0,△≥0.
7、列方程解應(yīng)用題:審題設(shè)元→列代數(shù)式、列方程→整理成一般形式→解方程→檢驗作答。
旋轉(zhuǎn)
1、旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,旋轉(zhuǎn)角。
2、旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等,②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,③旋轉(zhuǎn)前、后的圖形全等。
關(guān)鍵:找好對應(yīng)線段、對應(yīng)角。
3、中心對稱:把一個圖形繞著某一點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么這兩個圖形關(guān)于這個點對稱或中心對稱。
4、中心對稱的性質(zhì):①關(guān)于中心對稱的兩個圖形,對應(yīng)點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。②關(guān)于中心對稱的兩個圖形是全等形。
5、中心對稱圖形:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形。
6、對稱點的坐標規(guī)律:①關(guān)于x軸對稱:橫坐標不變,縱坐標互為相反數(shù),②關(guān)于y軸對稱:橫坐標互為相反數(shù),縱坐標不變,③關(guān)于原點對稱:橫坐標、縱坐標都互為相反數(shù)。