国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

初三下冊數(shù)學銳角三角函數(shù)教案

時間:2017-04-26 15:36:00   來源:無憂考網(wǎng)     [字體: ]
一、情境導入
如圖是兩個自動扶梯,甲、乙兩人分別從1、2號自動扶梯上樓,誰 先到達樓頂?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它們的高度AC 和A′C′相等嗎?AB、 AC、BC與∠α,A′B′、A′C′、B′C′與∠β之間有什么關系呢? --- ---導出新課
二、新課教學
1、合作探究
見課本
2、三角函數(shù) 的定義在Rt△ABC中,如果銳角A確定,那么∠A的對邊與斜邊的比、鄰邊與斜邊的比也隨之確定.
∠A 的對邊與鄰邊的比叫 做∠A的正弦(sine),記作s inA,即s in A=
∠A的鄰邊與斜邊的比叫做∠A的余弦(cosine),記作cosA,即cosA=
∠A的對邊與∠A的鄰邊的比叫做∠A的正切(tangent) ,記作tanA,即
銳角A的正弦、余弦和正切統(tǒng)稱∠A的三角函數(shù).
注意 :sinA,cosA, tanA都是一個完整的符號,單獨的 “sin”沒有意義 ,其中A前面的“∠”一般省略不寫。
師:根據(jù)上面的三角函數(shù)定義,你知道正弦與余弦三角函數(shù)值的取值范圍嗎 ?
師:(點撥)直角三角形中,斜邊大于直角邊.
生:獨立思考,嘗試回答 ,交流結(jié)果.
明確:0<sina<1,0 <cosa<1.
鞏固練 習:課內(nèi)練習T1、作業(yè)題T1、2
3、如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.

分析:由勾股定理求出AC的長度,再根據(jù)直角三角形中銳角三角函數(shù)值與三邊之間的關系求出各函數(shù)值。
師:觀察以上 計算結(jié)果,你 發(fā)現(xiàn)了什么?
明確:sinA=cosB,cosA=sinB,tanA•ta nB=1
4 、課堂練習:課本課內(nèi)練習T2、3,作業(yè)題T3、4、5、6
三、課 堂小結(jié):談談今天 的收獲
1、內(nèi)容總結(jié)
(1)在RtΔA BC中,設∠C= 900,∠α為RtΔABC的一個銳角,則
∠α的正弦 , ∠α的余弦 ,
∠α的正切
(2)一般地,在Rt△ ABC中, 當∠C=90°時,sinA=cosB,cosA=sinB,tanA•tanB=1
2、 方法歸納
在涉及直角三角形邊角關系時, 常借助三角函數(shù)定義來解