【篇一】
擲硬幣并非公平
拋硬幣是做決定時普遍使用的一種方法。人們認(rèn)為這種方法對當(dāng)事人雙方都很公平。因為他們認(rèn)為錢幣落下后正面朝上和反面朝上的概率都一樣,都是50%。但是有趣的是,這種非常受歡迎的想法并不正確。
首先,雖然硬幣落地時立在地上的可能性非常小,但是這種可能性是存在的。其次,即使我們排除了這種很小的可能性,測試結(jié)果也顯示,如果你按常規(guī)方法拋硬幣,即用大拇指輕彈,開始拋時硬幣朝上的一面在落地時仍朝上的可能性大約是51%。
之所以會發(fā)生上述情況,是因為在用大拇指輕彈時,有些時候錢幣不會發(fā)生翻轉(zhuǎn),它只會像一個顫抖的飛碟那樣上升,然后下降。如果下次你要選出將要拋錢幣的人手上的錢幣在落地后哪面會朝上,你應(yīng)該先看一看哪面朝上,這樣你猜對的概率要高一些。但是如果那個人是握起錢幣,又把拳頭調(diào)了一個個兒,那么,你就應(yīng)該選擇與開始時相反的一面。
【篇二】
多少只襪子才能配成一對?
關(guān)于多少只襪子能配成對的問題,答案并非兩只。而且這種情況并非只在我家發(fā)生。為什么會這樣呢?那是因為我敢擔(dān)保在冬季黑蒙蒙的早上,如果我從裝著黑色和藍(lán)色襪子的抽屜里拿出兩只,它們或許始終都無法配成一對。雖然我不是太幸運,但是如果我從抽屜里拿出3只襪子,我敢說肯定會有一雙顏色是一樣的。不管成對的那雙襪子是黑色還是藍(lán)色,終都會有一雙顏色一樣的。如此說來,只要借助一只額外的襪子,數(shù)學(xué)規(guī)則就能戰(zhàn)勝墨菲法則。通過上述情況可以得出,“多少只襪子能配成一對”的答案是3只。
當(dāng)然只有當(dāng)襪子是兩種顏色時,這種情況才成立。如果抽屜里有3種顏色的襪子,例如藍(lán)色、黑色和白色襪子,你要想拿出一雙顏色一樣的,至少必須取出4只襪子。如果抽屜里有10種不同顏色的襪子,你就必須拿出11只。根據(jù)上述情況總結(jié)出來的數(shù)學(xué)規(guī)則是:如果你有N種類型的襪子,你必須取出N+1只,才能確保有一雙完全一樣的。
【篇三】
火車相向而行問題
兩輛火車沿相同軌道相向而行,每輛火車的時速都是50英里。兩車相距100英里時,一只蒼蠅以每小時60英里的速度從火車A開始向火車B方向飛行。它與火車B相遇后,馬上掉頭向火車A飛行,如此反復(fù),直到兩輛火車相撞在一起,把這只蒼蠅壓得粉碎。蒼蠅在被壓碎前一共飛行了多遠(yuǎn)?
我們知道兩車相距100英里,每輛車的時速都是50英里。這說明每輛車行駛50英里,即一小時后兩車相撞。在火車出發(fā)到相撞的這一小時間,蒼蠅一直以每小時60英里的速度飛行,因此在兩車相撞時,蒼蠅飛行了60英里。不管蒼蠅是沿直線飛行,還是沿”z”型線路飛行,或者在空中翻滾著飛行,其結(jié)果都一樣。