1、整式的乘除的公式運用(六條)及逆運用(數的計算)。
(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an
(5)a0 (a≠0) (6)a-p= =
2、單項式與單項式、多項式相乘的法則。
3、整式的乘法公式(兩條)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2 (a-b)2
常用公式:(x+m)(x+n)=
5、單項式除以單項式,多項式除以單項式(轉換單項式除以單項式)。
6、互為余角和互為補角和
7、兩直線平行的條件:(角的關系線的平行) ①相等,兩直線平行;
、 相等,兩直線平行;
、 互補,兩直線平行.
8、平行線的性質:兩直線平行。(線的平行
9、能判別變量中的自變量和因變量,會列列關系式(因變量=自變量與常量的關系)
10、變量中的圖象法,注意:(1)橫、縱坐標的對象。(2)起點、終點不同表示什么意義
(3)圖象交點表示什么意義(4)會求平均值。
11、三角形(1)三邊關系:角的關系)
(2)內角關系:
(3)三角形的三條重要線段:
(重點)(4)三角形全等的判別方法:(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)
(5)全等三角形的性質:
(重點)(6)等腰三角形:(a)知邊求邊、周長方法
(b)知角求角方法
(c)三線合一:
(7)等邊三角形:
12、會判軸對稱圖形,會根據畫對稱圖形,(或在方格中畫)
13、常見的軸對稱圖形有:14、(1)等腰三角形: 對稱軸, 性質
(2)線段 : 對稱軸 ,性質
(3)角 : 對稱軸 ,性質
15、尺規(guī)作圖:(1) 作一線段等已知線段 (2)作角已知角 (3)作線段垂直平分線
(4)作角的平分線 (5)作三角形
16、事件的分類:,會求各種事件的概率
(1)摸球:P(摸某種球)=
(2)摸牌: P(摸某種牌)=
(3)轉盤: P(指向某個區(qū)域)=
(4)拋骰子: P(拋出某個點數)=
(5)方格(面積): P(停留某個區(qū)域)=
17、必然事件不可能事件,不確定事件
18、方法歸納:(1)求邊相等可以利用
(2)求角相等可以利用 。
(3)計算簡便可以利用 。
19、注意復習:合并同類項的法則,科學記數法,解一元一次方程,絕對值。