【#初中二年級# #初二上冊數(shù)學期末知識點總結#】要想取得好的學習成績,必須要有良好的學習習慣。習慣是經(jīng)過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習習慣,就會使自己學習感到有序而輕松。以下是®無憂考網(wǎng)為您整理的《初二上冊數(shù)學期末知識點總結》,供大家查閱。
1.初二上冊數(shù)學期末知識點總結
平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面。②兩條數(shù)軸。③互相垂直。④原點重合。
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向。
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
2.初二上冊數(shù)學期末知識點總結
等邊三角形的性質:
等邊三角形的三個角都相等,并且每一個角都等于600。
等邊三角形的判定:
、偃齻角都相等的三角形是等邊三角形。
、谟幸粋角是600的等腰三角形是等邊三角形。
在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。
等腰三角形的性質
(1)等腰三角形的性質定理及推論:
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,并且每個角都等于60°。
(2)等腰三角形的其他性質:
、俚妊苯侨切蔚膬蓚底角相等且等于45°
②等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
③等腰三角形的三邊關系:設腰長為a,底邊長為b,則
④等腰三角形的三角關系:設頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=
等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。
3.初二上冊數(shù)學期末知識點總結
一、軸對稱圖形
1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。
2、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點
3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系
4、軸對稱的性質
、訇P于某直線對稱的兩個圖形是全等形。
②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
、圯S對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
、苋绻麅蓚圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。
二、線段的垂直平分線
1、經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2、線段垂直平分線上的點與這條線段的兩個端點的距離相等
3、與一條線段兩個端點距離相等的點,在線段的垂直平分線上
三、用坐標表示軸對稱小結:
在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù)。關于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等。
三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等
四、(等腰三角形)知識點回顧
1、等腰三角形的性質
①等腰三角形的兩個底角相等。(等邊對等角)
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
4.初二上冊數(shù)學期末知識點總結
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經(jīng)過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.三角形全等的判定公理及推論有:“邊角邊”簡稱“SAS”“角邊角”簡稱“ASA”“邊邊邊”簡稱“SSS”“角角邊”簡稱“AAS”斜邊和直角邊相等的兩直角三角形(HL)。
3.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。
4.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、俅_定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系)
②回顧三角形判定,搞清我們還需要什么。
、壅_地書寫證明格式(順序和對應關系從已知推導出要證明的問題)。
軸對稱知識概念
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。角平分線上的點到角兩邊距離相等。線段垂直平分線上的任意一點到線段兩個端點的距離相等。與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。有一個角是60°的等腰三角形是等邊三角形,有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
10.同底數(shù)冪的乘法法則:冪的乘方法則:(m,n都是正數(shù))
11.整式的乘法
(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3)多項式與多項式相乘:多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
5.初二上冊數(shù)學期末知識點總結
直角三角形
知識點一、直角三角形的性質定理及推論:
1、直角三角形的兩個銳角互余。
2、直角三角形斜邊上的中線等于斜邊的一半。
3、推論:(1)在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;
(2)在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角等于30°。
4、勾股定理:直角三角形兩直角邊a、b的平方和,等于斜邊c的平方,即a^2+b^2=c^2。(勾股數(shù):能夠構成直角三角形三條邊的正整數(shù){a,b,c}稱為勾股數(shù),常見的勾股數(shù)有:{3k,4k,5k},{5k,12k,13k},{8k,15k,17k},{7k,24k,25k},{9k,40k,41k},其中k為正正整數(shù))
知識點二、直角三角形的判定定理:
1、有一個角是直角的三角形是直角三角形。
2、有兩個角互余的三角形是直角三角形。
3、如果三角形一邊上的'中線等于這條邊的一半,那么這個三角形是直角三角形。
4、如果三角形的三邊長a、b、c滿足關系:a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)
知識點三、直角三角形的全等的判定(5種方法):
1、判定一般三角形全等的方法(SSS、SAS、ASA、AAS).
2、判定直角三角形全等獨有的方法:有一條斜邊和一條直角邊對應相等的兩個直角三角形全等,即HL定理(斜邊、直角邊定理)。
知識點四、角平分線的性質和判定:
1、性質:角的平分線上的點到角的兩邊的距離相等。
2、判定:角的內(nèi)部到角的兩邊距離相等的點在角的平分線上。