®無憂考網(wǎng)小學(xué)三年級頻道為大家整理的小學(xué)三年級奧數(shù)專題解析—巧求矩形面積,供大家學(xué)習(xí)參考。
同學(xué)們都知道求正方形和長方形面積的公式:
正方形的面積=a×a(a為邊長),
長方形的面積=a×b(a為長,b為寬)。
利用這兩個公式可以計算出各種各樣的直角多邊形的面積。例如,對左下圖,我們無法直接求出它的面積,但是通過將它分割成幾塊,其中每一塊都是正方形或長方形(見右下圖),分別計算出各塊面積再求和,就得出整個圖形的面積。
例1 右圖中的每個數(shù)字分別表示所對應(yīng)的線段的長度(單位:米)。這個圖形的面積等于多少平方米?
分析與解:將此圖形分割成長方形有下面兩種較簡單的方法,圖形都被分割成三個長方形。根據(jù)這兩種不同的分割方法,都可以計算出圖形的的面積。
5×2+(5+3)×3+(5+3+4)×2=58(米2);
或
5×(2+3+2)+3×(2+3)+4×2=58(米2)。
上面的方法是通過將圖形分割成若干個長方形,然后求圖形面積的。實際上,我們也可以將圖形“添補”成一個大長方形(見下圖),然后利用大長方形與兩個小長方形的面積之差,求出圖形的面積。
(5+3+4)×(2+3+2)-2×3-(2+3)×4=58(米2);
或
(5+3+4)×(2+3+2)-2×(3+4)-3×4=58(米2)。
由例1看出,計算直角多邊形面積,主要是利用“分割”和“添補”的方法,將圖形演變?yōu)槎鄠長方形的和或差,然后計算出圖形的面積。其中“分割”是最基本、最常用的方法。