1、常見的勾股數(shù)及幾種通式有
(1)(3,4,5),(6,8,10)……
3n,4n,5n(n是正整數(shù))
(2)(5,12,13),(7,24,25),(9,40,41)……
2n+1,2n^2+2n,2n^2+2n+1(n是正整數(shù))
(3)(8,15,17),(12,35,37)……
^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整數(shù))
(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整數(shù),m>n)
2、勾股定理常見知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180"
18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
3、勾股定理內(nèi)容
直角三角形(等腰直角三角形也算在內(nèi))兩直角邊(即“勾”“股”短的為勾,長的為股)邊長平方和等于斜邊(即“弦”)邊長的平方。
也就是說設(shè)直角三角形兩直角邊為a和b,斜邊為c,那么a的平方+b的平方=c的平方a2+b2=c2。
勾股定理現(xiàn)發(fā)現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。
中國古代數(shù)學(xué)家商高說:“若勾三,股四,則弦五!彼挥涗浽诹恕毒耪滤阈g(shù)》中。
4、勾股定理定理
如果直角三角形兩直角邊分別為a,b,斜邊為C,那么a^2+b^2=c^2。
即直角三角形兩直角邊長的平方和等于斜邊長的平方。