【#初中三年級(jí)# #數(shù)學(xué)初三上冊(cè)知識(shí)點(diǎn)歸納#】知識(shí)是符合文明方向的,人類對(duì)物質(zhì)世界以及精神世界探索的結(jié)果總和。知識(shí),至今也沒有一個(gè)統(tǒng)一而明確的界定。有一個(gè)經(jīng)典的定義來自于柏拉圖:一條陳述能稱得上是知識(shí)必須滿足三個(gè)條件,它一定是被驗(yàn)證過的,正確的,而且是被人們相信的,這也是科學(xué)與非科學(xué)的區(qū)分標(biāo)準(zhǔn)。由此看來,知識(shí)屬于文化,而文化是感性與知識(shí)上的升華,這就是知識(shí)與文化之間的關(guān)系。本篇文章是©無憂考網(wǎng)為您整理的《數(shù)學(xué)初三上冊(cè)知識(shí)點(diǎn)歸納》,供大家借鑒。
【第一章實(shí)數(shù)】
一、重要概念1.數(shù)的分類及概念數(shù)系表:
說明:"分類"的原則:1)相稱(不重、不漏)2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):①定義及表示法
、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時(shí),1/a<1;D.積為1。
4.相反數(shù):①定義及表示法
、谛再|(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義("三要素")
、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│≥0,符號(hào)"││"是"非負(fù)數(shù)"的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號(hào)。
二、實(shí)數(shù)的運(yùn)算
1.運(yùn)算法則(加、減、乘、除、乘方、開方)
2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3.運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從"左"
到"右"(如5÷×5);C.(有括號(hào)時(shí))由"小"到"中"到"大"。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號(hào)。
【第二章代數(shù)式】
★重點(diǎn)★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算
☆內(nèi)容提要☆
一、重要概念
分類:
1.代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)
的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項(xiàng)式與多項(xiàng)式
沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積-包括單獨(dú)的一個(gè)數(shù)或字母)
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類別時(shí),是從外形來看。如,
=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
5.同類項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別:、是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
、耪龜(shù)a的正的平方根([a≥0-與"平方根"的區(qū)別]);
、扑阈g(shù)平方根與絕對(duì)值
、俾(lián)系:都是非負(fù)數(shù),=│a│
、趨^(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8.同類二次根式、最簡(jiǎn)二次根式、分母有理化
化為最簡(jiǎn)二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號(hào)劃去叫做分母有理化。
9.指數(shù)
、(-冪冪,乘方運(yùn)算)
、賏>0時(shí),>0;②a<0時(shí),>0(n是偶數(shù)),<0(n是奇數(shù))
、屏阒笖(shù):=1(a≠0)
負(fù)整指數(shù):=1/(a≠0,p是正整數(shù))
二、運(yùn)算定律、性質(zhì)、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質(zhì)
⑴基本性質(zhì):=(m≠0)
、品(hào)法則:
⑶繁分式:①定義;②化簡(jiǎn)方法(兩種)
3.整式運(yùn)算法則(去括號(hào)、添括號(hào)法則)
4.冪的運(yùn)算性質(zhì):①o=;②÷=;③=;④=;⑤
技巧:
5.乘法法則:⑴單×單;⑵單×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b)=
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術(shù)根的性質(zhì):=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)
10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A.;B.;C..
11.科學(xué)記數(shù)法:(1≤a<10,n是整數(shù)=
三、應(yīng)用舉例(略)
四、數(shù)式綜合運(yùn)算(略)
【第三章統(tǒng)計(jì)初步】
★重點(diǎn)★
☆內(nèi)容提要☆
一、重要概念
1.總體:考察對(duì)象的全體。
2.個(gè)體:總體中每一個(gè)考察對(duì)象。
3.樣本:從總體中抽出的一部分個(gè)體。
4.樣本容量:樣本中個(gè)體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù))
二、計(jì)算方法
1.樣本平均數(shù):⑴;⑵若,,…,,則(a-常數(shù),,,…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(shì)(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。
2.樣本方差:⑴;⑵若,,…,,則(a-接近、、…、的平均數(shù)的較"整"的常數(shù));若、、…、較"小"較"整",則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、應(yīng)用舉例(略)
【第四章直線形】
★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從"圖形"、"表示法"、"界限"、"端點(diǎn)個(gè)數(shù)"、"基本性質(zhì)"等方面加以分析。
2.線段的中點(diǎn)及表示
3.直線、線段的基本性質(zhì)(用"線段的基本性質(zhì)"論證"三角形兩邊之和大于第三邊")
4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補(bǔ)角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明"直角三角形中斜邊大于直角邊")
9.對(duì)頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②××線的交點(diǎn)-三角形的×心③性質(zhì)
、俑呔②中線③角平分線④中垂線⑤中位線
、乓话闳切微铺厥馊切危褐苯侨切、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
、乓话闳切稳鹊呐卸(SAS、ASA、AAS、SSS)
、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒
6.三角形的面積
、乓话阌(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
、胖苯幼C法:綜合法、分析法
⑵間接證法-反證法:①反設(shè)②歸謬③結(jié)論
、亲C線段相等、角相等常通過證三角形全等
、茸C線段倍分關(guān)系:加倍法、折半法
、勺C線段和差關(guān)系:延結(jié)法、截余法
、首C面積關(guān)系:將面積表示出來
三、四邊形
分類表:
1.一般性質(zhì)(角)
、艃(nèi)角和:360°
⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。
推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。
、峭饨呛停360°
2.特殊四邊形
⑴研究它們的一般方法:
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形--↑
⑷對(duì)角線的紐帶作用:
3.對(duì)稱圖形
、泡S對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
、谌切巍⑻菪蔚闹形痪定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中常"平移一腰"、"平移對(duì)角線"、"作高"、"連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交"轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
【第五章方程(組)】
★重點(diǎn)★一元一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題)
☆內(nèi)容提要☆
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2.分類:
二、解方程的依據(jù)-等式性質(zhì)
1.a=b←→a+c=b+c
2.a=b←→ac=bc(c≠0)
三、解法
1.一元一次方程的解法:去分母→去括號(hào)→移項(xiàng)→合并同類項(xiàng)→
系數(shù)化成1→解。
2.元一次方程組的解法:⑴基本思想:"消元"⑵方法:①代入法
、诩訙p法
四、一元二次方程
1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)
、婆浞椒(注意步驟-推倒求根公式)
、枪椒ǎ
⑷因式分解法(特征:左邊=0)
3.根的判別式:
4.根與系數(shù)頂?shù)年P(guān)系:
逆定理:若,則以為根的一元二次方程是:。
5.常用等式:
五、可化為一元二次方程的方程
1.分式方程
⑴定義
、苹舅枷耄
、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如,)
、闰(yàn)根及方法
2.無理方程
⑴定義
、苹舅枷耄
、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例,)⑷驗(yàn)根及方法
3.簡(jiǎn)單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。
六、列方程(組)解應(yīng)用題
一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)*系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什
么。
⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。
⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。
⑸解方程及檢驗(yàn)。
、蚀鸢。
綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
二常用的相等關(guān)系
1.行程問題(勻速運(yùn)動(dòng))
基本關(guān)系:s=vt
、畔嘤鰡栴}(同時(shí)出發(fā)):
、谱芳皢栴}(同時(shí)出發(fā)):
若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則
、撬泻叫校;
2.配料問題:溶質(zhì)=溶液×濃度
溶液=溶質(zhì)+溶劑
3.增長(zhǎng)率問題:
4.工程問題:基本關(guān)系:工作量=工作效率×工作時(shí)間(常把工作量看著單位"1")。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
三注意語言與解析式的互化
如,"多"、"少"、"增加了"、"增加為(到)"、"同時(shí)"、"擴(kuò)大為(到)"、"擴(kuò)大了"、……
又如,一個(gè)三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c,則這個(gè)三位數(shù)為:100a+10b+c,而不是abc。
四注意從語言敘述中寫出相等關(guān)系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,"小時(shí)""分鐘"的換算;s、v、t單位的一致等。
七、應(yīng)用舉例(略)
【第六章一元一次不等式(組)】
★重點(diǎn)★一元一次不等式的性質(zhì)、解法
☆內(nèi)容提要☆
1.定義:a>b、a
2.一元一次不等式:ax>b、ax
3.一元一次不等式組:
4.不等式的性質(zhì):⑴a>b←→a+c>b+c
、芶>b←→ac>bc(c>0)
、莂>b←→ac
⑷(傳遞性)a>b,b>c→a>c
、蒩>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)
7.應(yīng)用舉例(略)
- 初三寒假作業(yè)答案2025(15篇)
- 九年級(jí)寒假作業(yè)答案2025(精選15篇)
- 初三家鄉(xiāng)的春節(jié)作文700字(15篇)
- 2019-2020學(xué)年天津市南開區(qū)九年級(jí)上學(xué)期數(shù)學(xué)
- 2023-2024學(xué)年四川省成都市天府新區(qū)九年級(jí)上
- 2018-2019學(xué)年天津市武清區(qū)九年級(jí)上學(xué)期化學(xué)
- 初三傳統(tǒng)節(jié)日重陽節(jié)作文(20篇)
- 2018-2019學(xué)年天津市寧河區(qū)九年級(jí)上學(xué)期物理