国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

北京中科院2019考研大綱(高等數(shù)學(xué)(丙))

時間:2018-09-12 15:38:00   來源:無憂考網(wǎng)     [字體: ]
【#考研# #北京中科院2019考研大綱(高等數(shù)學(xué)(丙))#】中國科學(xué)院(ChineseAcademyofSciences)成立于1949年11月,為中國自然科學(xué)學(xué)術(shù)機(jī)構(gòu)、科學(xué)技術(shù)咨詢機(jī)構(gòu)、自然科學(xué)與高技術(shù)綜合研究發(fā)展中心。以下是®無憂考網(wǎng)為大家整理的《北京中科院2019考研大綱(高等數(shù)學(xué)(丙))》供您查閱。

  一、考試性質(zhì)

  中國科學(xué)院大學(xué)碩士研究生入學(xué)高等數(shù)學(xué)(丙)考試是為招收理學(xué)非數(shù)學(xué)專業(yè)碩士研究生而設(shè)置的選拔考試。它的主要目的是測試考生的數(shù)學(xué)素質(zhì),包括對高等數(shù)學(xué)各項(xiàng)內(nèi)容的掌握程度和應(yīng)用相關(guān)知識解決問題的能力。考試對象為參加全國碩士研究生入學(xué)考試、并報(bào)考化學(xué)、生態(tài)學(xué)等專業(yè)的考生。

  二、考試的基本要求

  要求考生系統(tǒng)地理解高等數(shù)學(xué)的基本概念和基本理論,掌握高等數(shù)學(xué)的基本方法。要求考生具有抽象思維能力、邏輯推理能力、空間想象能力、數(shù)*算能力和綜合運(yùn)用所學(xué)的知識分析問題和解決問題的能力。

  三、考試方法和考試時間

  高等數(shù)學(xué)(丙)考試采用閉卷筆試形式,試卷滿分為150分,考試時間為180分鐘。

  四、考試內(nèi)容和考試要求

  (一)函數(shù)、極限、連續(xù)

  考試內(nèi)容

  函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形

  數(shù)列極限與函數(shù)極限的概念無窮小和無窮大的概念及其關(guān)系無窮小的性質(zhì)及無窮小的比較極限的四則運(yùn)算極限存在的單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限。

  函數(shù)連續(xù)的概念函數(shù)間斷點(diǎn)的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。

  2.理解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。掌握判斷函數(shù)這些性質(zhì)的方法。

  3.理解復(fù)合函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。會求給定函數(shù)的復(fù)合函數(shù)和反函數(shù)。

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形。

  5.理解極限的概念(包括數(shù)列極限和函數(shù)極限),理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系。

  6.掌握極限的性質(zhì)及四則運(yùn)算法則,會運(yùn)用它們進(jìn)行一些基本的判斷和計(jì)算。

  7.掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限。掌握利用兩個重要極限求極限的方法。

  8.理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。

  9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點(diǎn)的類型。

  10.掌握連續(xù)函數(shù)的運(yùn)算性質(zhì)和初等函數(shù)的連續(xù)性,熟悉閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、值和最小值定理、介值定理等),并會應(yīng)用這些性質(zhì)。

  (二)一元函數(shù)微分學(xué)

  考試內(nèi)容

  導(dǎo)數(shù)的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線基本初等函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的四則運(yùn)算復(fù)合函數(shù)、反函數(shù)、隱函數(shù)的導(dǎo)數(shù)的求法參數(shù)方程所確定的函數(shù)的求導(dǎo)方法高階導(dǎo)數(shù)的概念高階導(dǎo)數(shù)的求法微分的概念和微分的幾何意義函數(shù)可微與可導(dǎo)的關(guān)系微分的運(yùn)算法則及函數(shù)微分的求法一階微分形式的不變性微分在近似計(jì)算中的應(yīng)用微分中值定理洛必達(dá)(L’Hospital)法則泰勒(Taylor)公式函數(shù)的極值函數(shù)值和最小值函數(shù)單調(diào)性函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)圖形的描繪

  考試要求

  1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,掌握函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。

  2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本的求導(dǎo)方法。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分。

  3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。

  4.會求分段函數(shù)的一階、二階導(dǎo)數(shù)。

  5.會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)

  6.會求反函數(shù)的導(dǎo)數(shù)。

  7.理解并會用羅爾定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理,掌握這四個定理的簡單應(yīng)用。

  8.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)值和最小值的求法及其簡單應(yīng)用。

  9.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直漸近線,會描繪函數(shù)的圖形。

  10.掌握用洛必達(dá)法則求未定式極限的方法。

  (三)一元函數(shù)積分學(xué)

  考試內(nèi)容

  原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理變上限定積分定義的函數(shù)及其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分廣義積分(無窮限積分、瑕積分)定積分的應(yīng)用

  考試要求

  1.理解原函數(shù)的概念,理解不定積分和定積分的概念。

  2.熟練掌握不定積分的基本公式,熟練掌握不定積分和定積分的性質(zhì)及定積分中值定理。掌握牛頓-萊布尼茨公式。熟練掌握不定積分和定積分的換元積分法與分部積分法。

  3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。

  4.理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù)。

  5.理解廣義積分(無窮限積分、瑕積分)的概念,掌握無窮限積分、瑕積分的收斂性判別法,會計(jì)算一些簡單的廣義積分。

  6.會利用定積分計(jì)算平面圖形的面積.旋轉(zhuǎn)體的體積和函數(shù)的平均值。

  (四)多元函數(shù)微積分學(xué)

  考試內(nèi)容

  多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限和連續(xù)有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)偏導(dǎo)數(shù)和全微分的概念及求法多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)的求法多元函數(shù)的極值和條件極值拉格朗日乘數(shù)法多元函數(shù)的值、最小值及其簡單應(yīng)用全微分在近似計(jì)算中的應(yīng)用二重積分的概念及性質(zhì)二重積分的計(jì)算和應(yīng)用

  考試要求

  1.理解多元函數(shù)的概念、理解二元函數(shù)的幾何意義。

  2.了解二元函數(shù)的極限與連續(xù)性的概念及基本運(yùn)算性質(zhì),了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。

  3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求偏導(dǎo)數(shù)和全微分,掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法,掌握隱函數(shù)的偏導(dǎo)數(shù)求法。

  3.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的值、最小值,并會解決一些簡單的應(yīng)用問題。

  4.了解全微分在近似計(jì)算中的應(yīng)用。

  5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo).極坐標(biāo))。

  (五)無窮級數(shù)

  考試內(nèi)容

  常數(shù)項(xiàng)級數(shù)及其收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與p級數(shù)及其收斂性正項(xiàng)級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項(xiàng)級數(shù)的絕對收斂與條件收斂函數(shù)項(xiàng)級數(shù)的收斂域、和函數(shù)的概念冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡單冪級數(shù)的和函數(shù)的求法泰勒級數(shù)初等函數(shù)的冪級數(shù)展開式函數(shù)的冪級數(shù)展開式在近似計(jì)算中的應(yīng)用

  考試要求

  1.理解常數(shù)項(xiàng)級數(shù)的收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件

  2.掌握幾何級數(shù)與p級數(shù)的收斂與發(fā)散情況。

  3.掌握正項(xiàng)級數(shù)收斂性的各種判別法。

  4.了解任意項(xiàng)級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,掌握交錯級數(shù)的萊布尼茨判別法。

  5.了解函數(shù)項(xiàng)級數(shù)的收斂域及和函數(shù)的概念。

  6.理解冪級數(shù)的收斂域、收斂半徑的概念,并掌握冪級數(shù)的收斂半徑及收斂域的求法。

  7.了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)微分和逐項(xiàng)積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項(xiàng)級數(shù)的和。

  8.掌握一些常見函數(shù)如ex、sinx、cosx、ln(1+x)和(1+x)α等的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。

  9.會利用函數(shù)的冪級數(shù)展開式進(jìn)行近似計(jì)算。

  (六)常微分方程

  考試內(nèi)容

  常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降價的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程二階常系數(shù)非齊次線性微分方程微分方程的簡單應(yīng)用

  考試要求

  1.了解微分方程及其階、解、通解、初始條件和特解等概念。

  2.掌握變量可分離的微分方程的解法,掌握解一階線性微分方程的常數(shù)變易法。

  3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換求解某些微分方程。

  4.會用降階法解下列方程:y(n)=f(x),y″=f(x,y′)和y″=f(y,y′)

  5.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。了解解二階非齊次線性微分方程的常數(shù)變易法。

  6.掌握二階常系數(shù)齊次線性微分方程的解法。

  7.會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)、以及它們的和與積的二階常系數(shù)非齊次線性微分方程。

  8會用微分方程解決一些簡單的應(yīng)用問題。

  (七)行列式

  考試內(nèi)容

  行列式的概念和基本性質(zhì)行列式按行(列)展開定理

  考試要求

  1.了解行列式的概念,掌握行列式的性質(zhì).

  2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式.

  (八)矩陣

  考試內(nèi)容

  矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運(yùn)算

  考試要求

  1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì).

  2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).

  3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.

  4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.

  5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則.

  (九)向量

  考試內(nèi)容

  向量的概念向量的線性組合與線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積

  考試要求

  1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則.

  2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.

  3.了解向量組的極大線性無關(guān)組的概念和向量組秩的概念,會求向量組的極大線性無關(guān)組及秩.

  4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.

  5.了解內(nèi)積的概念.掌握向量內(nèi)積的運(yùn)算.

  (十)線性方程組

  考試內(nèi)容

  線性方程組的克萊姆(Cramer)法則線性方程組有解和無解的判定齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系非齊次線性方程組的通解

  考試要求

  1.會用克萊姆法則解線性方程組.

  2.掌握非齊次線性方程組有解和無解的判定方法.

  3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.

  4.了解非齊次線性方程組有解的條件,理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念.

  5.掌握用初等行變換求解線性方程組的方法.

  (十一)矩陣的特征值和特征向量

  考試內(nèi)容

  矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可對角化的充分必要條件實(shí)對稱矩陣的特征值和特征向量及相似對角矩陣

  考試要求

  1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.

  2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.

  3.掌握實(shí)對稱矩陣的特征值和特征向量的性質(zhì).

  五、主要參考文獻(xiàn)

  [1]《高等數(shù)學(xué)》第六版(上、下冊),同濟(jì)大學(xué)數(shù)學(xué)系主編,高等教育出版社,2007年。

  [2]《線性代數(shù)》第五版,同濟(jì)大學(xué)數(shù)學(xué)系主編,高等教育出版社,2007年。

  編制單位:中國科學(xué)院大學(xué)