1.正確認(rèn)識什么是中心對稱、對稱中心,理解關(guān)于中心對稱圖形的性質(zhì)特點.
2.能根據(jù)中心對稱的性質(zhì),作出一個圖形關(guān)于某點成中心對稱的對稱圖形.
重點
中心對稱的概念及性質(zhì).
難點
中心對稱性質(zhì)的推導(dǎo)及理解.
復(fù)習(xí)引入
問題:作出下圖的兩個圖形繞點O旋轉(zhuǎn)180°后的圖案,并回答下列的問題:
1.以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后兩個圖形是否重合?
2.各對應(yīng)點繞O旋轉(zhuǎn)180°后,這三點是否在一條直線上?
老師點評:可以發(fā)現(xiàn),如圖所示的兩個圖案繞O旋轉(zhuǎn)180°后都是重合的,即甲圖與乙圖重合,△OAB與△COD重合.
像這樣,把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心.
這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點.
探索新知
(老師)在黑板上畫一個三角形ABC,分兩種情況作兩個圖形:
(1)作△ABC一頂點為對稱中心的對稱圖形;
(2)作關(guān)于一定點O為對稱中心的對稱圖形.
第一步,畫出△ABC.
第二步,以△ABC的C點(或O點)為中心,旋轉(zhuǎn)180°畫出△A′B′C和△A′B′C′,如圖(1)和圖(2)所示.
從圖(1)中可以得出△ABC與△A′B′C是全等三角形;
分別連接對稱點AA′,BB′,CC′,點O在這些線段上且O平分這些線段.
下面,我們就以圖(2)為例來證明這兩個結(jié)論.
證明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可證:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;
(2)點A′是點A繞點O旋轉(zhuǎn)180°后得到的,即線段OA繞點O旋轉(zhuǎn)180°得到線段OA′,所以點O在線段AA′上,且OA=OA′,即點O是線段AA′的中點.
同樣地,點O也在線段BB′和CC′上,且OB=OB′,OC=OC′,即點O是BB′和CC′的中點.
因此,我們就得到
1.關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.
2.關(guān)于中心對稱的兩個圖形是全等圖形.
例題精講
例1如圖,已知△ABC和點O,畫出△DEF,使△DEF和△ABC關(guān)于點O成中心對稱.
分析:中心對稱就是旋轉(zhuǎn)180°,關(guān)于點O成中心對稱就是繞O旋轉(zhuǎn)180°,因此,我們連AO,BO,CO并延長,取與它們相等的線段即可得到.
解:(1)連接AO并延長AO到D,使OD=OA,于是得到點A的對稱點D,如圖所示.
(2)同樣畫出點B和點C的對稱點E和F.
(3)順次連接DE,EF,F(xiàn)D,則△DEF即為所求的三角形.
例2(學(xué)生練習(xí),老師點評)如圖,已知四邊形ABCD和點O,畫四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關(guān)于點O成中心對稱(只保留作圖痕跡,不要求寫出作法).
課堂小結(jié)(學(xué)生總結(jié),老師點評)
本節(jié)課應(yīng)掌握:
中心對稱的兩條基本性質(zhì):
1.關(guān)于中心對稱的兩個圖形,對應(yīng)點所連線都經(jīng)過對稱中心,而且被對稱中心所平分;
2.關(guān)于中心對稱的兩個圖形是全等圖形及其它們的應(yīng)用.
作業(yè)布置
教材第66頁練習(xí)