国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

初二學生數(shù)學上冊期中試題及答案

時間:2017-11-21 15:05:00   來源:無憂考網(wǎng)     [字體: ]

【#初中二年級# #初二學生數(shù)學上冊期中試題及答案#】以下是®憂考網(wǎng)整理的《初二學生數(shù)學上冊期中試題及答案》,一起來看看吧!


一、選擇題:(每小題3分,共30分)

1. 如右圖,圖中共有三角形( )

A、4個 B、5個 C、6個 D、8個

2.下面各組線段中,能組成三角形的是( )

A.1,2,3 B.1,2,4 C.3,4,5 D.4,4,8

3.下列圖形中具有不穩(wěn)定性的是(。

A、長方形B、等腰三角形 C、直角三角形D、銳角三角形

4. 在△ABC中,∠A=39°,∠B=41°,則∠C的度數(shù)為( )

A.70° B. 80° C.90° D. 100°

5. 如右圖所示,AB∥CD,∠A=45°,∠C=29°,則∠E的度數(shù)為( )

A.22.5° B. 16° C.18° D.29°

6. 下列幾何圖形中,是軸對稱圖形且對稱軸的條數(shù)大于1的有( )

①長方形;②正方形;③圓;④三角形;⑤線段;⑥射線.

A. 3個 B. 4個 C. 5個 D. 6個

7. 如圖所示,∠A+∠B+∠C+∠D+∠E的結(jié)果為( )

A.90° B.1 80° C.360° D. 無法確定

8. 正多邊形的一個內(nèi)角等于144°,則該多邊形是正( )邊形.

A.8 B.9 C.10 D.11

9. 如圖所示,BO,CO分別是∠ABC,∠ACB的兩條角平分線,∠A=100°,則∠BOC的度數(shù)為( ).

A.80° B.90° C.120° D.140°

10. 如圖,△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,DE⊥BC于點E,且BC=6,則△DEC的周長是( )

(A)12 cm (B)10 cm (C)6cm (D)以上都不對

二、填空題:(每小題3分,共24分)

11. 已知三角形兩邊長分別為4和9,則第三邊的取值范圍是 .

12. 等腰三角形的周長為20cm,一邊長為6cm,則底邊長為______.

13. 已知在△ABC中,∠A=40°,∠B-∠C=40°,則∠B=_____,∠C=______.

14. 如圖,所示,在△ABC中,D在AC上,連結(jié)BD,且∠ABC=∠C=∠1,∠A=∠3,則∠A 的度數(shù)為 .

15. 把邊長相同的正三角形和正方形組合鑲嵌,若用2個正方形,則還需要____個正三角形才可以鑲嵌.

16. 如果一個多邊形的內(nèi)角和為1260°,那么從這個多邊形的一個頂點可以連_____條對角線.

17. 如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,則△ABD的面積是____________.

18. 已知△ABC的三邊長a、b、c,化簡│a+b-c│-│b-a-c│的結(jié)果是_________.

三、解答下列各題:

19. 如圖所示,在△ABC中:

(1)畫出BC邊上的高AD和中線AE.(2分)

(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度數(shù).(4分)


20. 如圖,△ABC中,DE是AC的垂直平分線,AE=3cm,△ABD的周長為13cm.

求△ABC的周長.


21如圖,點A、F、C、D在同一直線上,點B和點E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.求證:BC∥EF.



22. 如圖所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一點E,如果∠BED=90°,試說明AB∥CD.





23. 請完成下面的說明:

(1)如圖①所示,△ABC的外角平分線交于G,試說明∠BGC=90°- ∠A.

說明:根據(jù)三角形內(nèi)角和等于180°,可知∠ABC+∠ACB=180°-∠_____.

根據(jù)平角是180°,可知∠ABE+∠ACF=180°×2=360°,

所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______.根據(jù)角平分線的意義,可知∠2+∠3= (∠EBC+∠FCB)= (180°+∠_____)=90°+ ∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____.

(2)如圖②所示,若△ABC的內(nèi)角平分線交于點I,試說明∠BIC=90°+ ∠A.

(3)用(1),(2)的結(jié)論,你能說出∠BGC和∠BIC的關(guān)系嗎?


24. 在△ABC中,AB=CB,∠ABC=90o,F為AB延長線上一點,點E在BC上,且AE=CF.

(1)求證:Rt△ABE≌Rt△CBF;

(2)若∠CAE=30o,求∠ACF度數(shù).



期中考試八年級數(shù)學試題參考答案

一、選擇題:(每小題3分,共30分)

1. D 2. C 3. A 4. D 5.B 6.B 7.B 8.C 9.D 10.C

二、填空題:(每小題3分,共24分)



三、解答下列各題:(19-20題,每小題6分;21-23題,每小題6分;24題10分,本大題共46分)

19. 解:(1)如答圖所示.

(2)∠BAD=60°,∠CAD=40°.

20. 解:∵DE是線段AC的垂直平分線

∴AD=CD

∵△ABD的周長為13cm

∴AB+BC=13cm

∵AE=3cm

∴AC=2AE=6cm. ∴△ABC的周長為:AB+BC+AC=19cm.

21. 證明:∵AF=DC,

∴AC=DF,又∠A=∠D,AB=DE,

∴△ABC≌△DEF,

∴∠ACB=∠DFE,

∴BC∥EF.

22.證明:在△BDE中,

∵∠BED=90°,

∠BED+∠EBD+∠EDB=180°,

∴∠EBD+∠EDB=180°-∠BED=180°-90°=90°.

又∵BE平分∠ABD,DE平分∠CDB,

∴∠ABD=2∠EBD,∠CDB=2∠EDB,

∴∠ABD+∠CDB=2(∠EBD+∠EDB)=2×90°=180°,

∴AB∥CD.





24.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.

在Rt△ABE和Rt△CBF中,

∵AE=CF,AB=BC,

∴Rt△ABE≌Rt△CBF(HL)

(2)∵AB=BC,∠ABC=90°,

∴∠CAB=∠ACB=45°.

∵∠BAE=∠CAB-∠CAE=45°-30°=15°.

由(1)知Rt△ABE≌Rt△CBF,

∴∠BCF=∠BAE=15°,

∴∠ACF=∠BCF+∠ACB=45°+15°=60°.