頂點(diǎn)坐標(biāo)公式
二次函數(shù)拋物線頂點(diǎn)式&頂點(diǎn)坐標(biāo)
頂點(diǎn)式:y=a(x-h)^2+k (a≠0,k為常數(shù),x≠h)
頂點(diǎn)坐標(biāo)公式頂點(diǎn)坐標(biāo):(-b/2a),(4ac-b^2)/4a)
二次函數(shù)y=ax2;,y=a(x-h)2;,y=a(x-h)2;+k,y=ax2;+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式
y=ax2
y=a(x-h)2
y=a(x-h)2+k
y=ax2+bx+c
頂點(diǎn)坐標(biāo)
[0,0]
[h,0]
[h,k]
[-b/2a,(4ac-b2)/4a ]
對(duì) 稱 軸
x=0
x=h
x=h
x=-b/2a
當(dāng)h>0時(shí),y=a(x-h)2的圖象可由拋物線y=ax2;向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
因此,研究拋物線y=ax2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上"當(dāng)a<0時(shí),開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是[ -b/2a,(4ac-b2)/4a]
3.拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小. 4.拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b2-4ac>0,圖象與x軸交于兩點(diǎn)A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x2-x1|=.
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x=時(shí),y最小(大)值=.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x₁)(x-x2)(a≠0).
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
余弦定理
A B C為角a b c所對(duì)的三邊
余弦:cosα=(B^2+C^2-A^2)/2BC
cosb=(A^2+C^2-B^2)/2AC
cosc=(A^2+B^2-C^2)/2AB
斜三角形的解法
已知條件 定理應(yīng)用 一般解法
一邊和兩角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b與c,在有解時(shí) 有一解。
兩邊和夾角 (如a、b、c) 余弦定理 由余弦定理求第三邊c,由正弦定理求出小邊所對(duì)的角,再 由A+B+C=180˙求出另一角,在有解時(shí)有一解。
三邊 (如a、b、c) 余弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解時(shí)只有一解。 數(shù)學(xué)公式斜三角形的解法
兩邊和其中一邊的對(duì)角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C邊,可有兩解、一解或無(wú)解。
- 2020-2021學(xué)年陜西省西安市長(zhǎng)安區(qū)八年級(jí)上學(xué)
- 2023-2024學(xué)年北京市西城區(qū)八年級(jí)上學(xué)期期末
- 2025八年級(jí)寒假作業(yè)答案(15篇)
- 2023-2024學(xué)年廣東省深圳市福田區(qū)八年級(jí)上學(xué)
- 2023-2024學(xué)年重慶市長(zhǎng)壽區(qū)八年級(jí)上學(xué)期期末
- 2023-2024學(xué)年河南省南陽(yáng)市八年級(jí)上學(xué)期期末
- 春節(jié)作文600字初二(15篇)
- 2023-2024學(xué)年浙江省杭州市拱墅區(qū)八年級(jí)上學(xué)