国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

初三數(shù)學上冊重要知識點概要

時間:2013-10-16 16:14:00   來源:無憂考網(wǎng)     [字體: ]

以下是®無憂考網(wǎng)為大家整理的關于初三數(shù)學上冊重要知識點概要的文章,供大家學習參考!

21 二次根式

1.二次根式:一般地,式子 叫做二次根式.

注意:(1)若 這個條件不成立,則 不是二次根式;

(2) 是一個重要的非負數(shù),即;  ≥0.

2.重要公式:(1) ,(2)  ;

3.積的算術平方根:

積的算術平方根等于積中各因式的算術平方根的積;

4.二次根式的乘法法則: .

5.二次根式比較大小的方法:

(1)利用近似值比大。

(2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大;

(3)分別平方,然后比大小.

6.商的算術平方根: ,

商的算術平方根等于被除式的算術平方根除以除式的算術平方根.

7.二次根式的除法法則:

(1) ;(2) ;

(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?

8.最簡二次根式:

(1)滿足下列兩個條件的二次根式,叫做最簡二次根式,① 被開方數(shù)的因數(shù)是整數(shù),因式是整式,② 被開方數(shù)中不含能開的盡的因數(shù)或因式;

(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;

(3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;

(4)二次根式計算的最后結(jié)果必須化為最簡二次根式.

10.同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式.

12.二次根式的混合運算:

(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;

(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等.

22 一元二次方程

1. 一元二次方程的一般形式: a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.

2. 一元二次方程的解法: 一元二次方程的四種解法要求靈活運用, 其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少.

3. 一元二次方程根的判別式: 當ax2+bx+c=0 (a≠0)時,Δ=b2-4ac 叫一元二次方程根的判別式.請注意以下等價命題:

Δ>0 <=> 有兩個不等的實根; Δ=0 <=> 有兩個相等的實根;Δ<0 <=> 無實根;             

4.平均增長率問題--------應用題的類型題之一 (設增長率為x):

   (1) 第一年為 a , 第二年為a(1+x) , 第三年為a(1+x)2.

(2)常利用以下相等關系列方程:  第三年=第三年   或  第一年+第二年+第三年=總和.

23 旋轉(zhuǎn)

1、概念:

把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.

旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

2、旋轉(zhuǎn)的性質(zhì):

(1)       旋轉(zhuǎn)前后的兩個圖形是全等形;

(2)       兩個對應點到旋轉(zhuǎn)中心的距離相等

(3)       兩個對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

  3、中心對稱:

把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心.

    這兩個圖形中的對應點叫做關于中心的對稱點.

  4、中心對稱的性質(zhì):

(1)關于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.

    (2)關于中心對稱的兩個圖形是全等圖形.

  5、中心對稱圖形:

把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.

  6、坐標系中的中心對稱

兩個點關于原點對稱時,它們的坐標符號相反,

即點P(x,y)關于原點O的對稱點P′(-x,-y).

 

 

24

1、(要求深刻理解、熟練運用)

1.垂徑定理及推論:                                                             

     如圖:有五個元素,“知二可推三”;需記憶其中四個定理,

即“垂徑定理”“中徑定理” “弧徑定理”“中垂定理”.         

 

 

 

 

 

 


幾何表達式舉例:

∵ CD過圓心

∵CD⊥AB

3.“角、弦、弧、距”定理:(同圓或等圓中)

“等角對等弦”; “等弦對等角”;

“等角對等弧”; “等弧對等角”;

“等弧對等弦”;“等弦對等(優(yōu),劣)弧”;

“等弦對等弦心距”;“等弦心距對等弦”.

 

幾何表達式舉例:

(1) ∵∠AOB=∠COD

∴ AB = CD

(2) ∵ AB = CD

∴∠AOB=∠COD

(3)……………

4.圓周角定理及推論:

(1)圓周角的度數(shù)等于它所對的弧的度數(shù)的一半;

(2)一條弧所對的圓周角等于它所對的圓心角的一半;(如圖)

(3)“等弧對等角”“等角對等弧”;

(4)“直徑對直角”“直角對直徑”;(如圖)

(5)如三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形.(如圖)

 

 

 

(1)          (2)(3)          (4)

幾何表達式舉例:

(1) ∵∠ACB= ∠AOB

∴  ……………

(2) ∵ AB是直徑

∴ ∠ACB=90°

(3) ∵ ∠ACB=90°

∴ AB是直徑

(4) ∵ CD=AD=BD

∴ ΔABC是RtΔ

 

5.圓內(nèi)接四邊形性質(zhì)定理:

圓內(nèi)接四邊形的對角互補,

并且任何一個外角都等于它的內(nèi)對角.

 

幾何表達式舉例:

∵ ABCD是圓內(nèi)接四邊形

∴  ∠CDE =∠ABC

∠C+∠A =180°

6.切線的判定與性質(zhì)定理:

如圖:有三個元素,“知二可推一”;

需記憶其中四個定理.

(1)經(jīng)過半徑的外端并且垂直于這條

半徑的直線是圓的切線;

(2)圓的切線垂直于經(jīng)過切點的半徑;

 

幾何表達式舉例:

(1) ∵OC是半徑

∵OC⊥AB

∴AB是切線

(2) ∵OC是半徑

∵AB是切線

∴OC⊥AB

9.相交弦定理及其推論:

(1)圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的乘積相等;

(2)如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段長的比例中項.

 

 

 

(1)               (2)

幾何表達式舉例:

(1) ∵PA·PB=PC·PD

∴………

(2) ∵AB是直徑

∵PC⊥AB

∴PC2=PA·PB

11.關于兩圓的性質(zhì)定理:

(1)相交兩圓的連心線垂直平分兩圓的公共弦;

(2)如果兩圓相切,那么切點一定在連心線上.

 

 


  

(1)                   (2)

幾何表達式舉例:

(1) ∵O1,O2是圓心

∴O1O2垂直平分AB

(2) ∵⊙1 、⊙2相切

∴O1 、A、O2三點一線

12.正多邊形的有關計算:

(1)中心角an ,半徑RN ,邊心距rn , 

          邊長an ,內(nèi)角bn ,邊數(shù)n;

(2)有關計算在RtΔAOC中進行.

 

 

公式舉例:

(1)  a= ;

(2) 

二  定理:

1.不在一直線上的三個點確定一個圓.

2.任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓.

3.正n邊形的半徑和邊心距把正n邊形分為2n個全等的直角三角形.

三  公式:

1.有關的計算:

(1)圓的周長C=2πR;(2)弧長L= ;(3)圓的面積S=πR2.

(4)扇形面積S扇形 = ;

(5)弓形面積S弓形 =扇形面積SAOB±ΔAOB的面積.(如圖)

2.圓柱與圓錐的側(cè)面展開圖:

(1)圓柱的側(cè)面積:S圓柱側(cè) =2πrh;  (r:底面半徑;h:圓柱高)

(2)圓錐的側(cè)面積:S圓錐側(cè) = =πrR.  (L=2πr,R是圓錐母線長;r是底面半徑)

四  常識:

1. 圓是軸對稱和中心對稱圖形.

2. 圓心角的度數(shù)等于它所對弧的度數(shù).

3. 三角形的外心 Û 兩邊中垂線的交點 Û 三角形的外接圓的圓心;

三角形的內(nèi)心 Û 兩內(nèi)角平分線的交點 Û 三角形的內(nèi)切圓的圓心.

4. 直線與圓的位置關系:(其中d表示圓心到直線的距離;其中r表示圓的半徑)

直線與圓相交 Û d<r ;  直線與圓相切 Û d=r ;  直線與圓相離 Û d>r.

5. 圓與圓的位置關系:(其中d表示圓心到圓心的距離,其中R、r表示兩個圓的半徑且R≥r)

兩圓外離  Û  d>R+r;   兩圓外切  Û  d=R+r; 兩圓相交  Û  R-r<d<R+r;

兩圓內(nèi)切  Û  d=R-r;   兩圓內(nèi)含  Û  d<R-r.

6.證直線與圓相切,常利用:“已知交點連半徑證垂直”和“不知交點作垂直證半徑” 的方法加輔助線.

 

25  概率

1、  必然事件、不可能事件、隨機事件的區(qū)別

2、概率

一般地,在大量重復試驗中,如果事件A發(fā)生的頻率 會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p.

注意:(1)概率是隨機事件發(fā)生的可能性的大小的數(shù)量反映.

(2)概率是事件在大量重復試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同.

3、求概率的方法

(1)用列舉法求概率(列表法、畫樹形圖法)

(2)用頻率估計概率:一大面,可用大量重復試驗中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.