本課程是重慶郵電大學(xué)理論物理專業(yè)碩士研究生考試課程。主要內(nèi)容如下:
一、函數(shù)、極限、連續(xù)
1. 理解函數(shù)的概念,掌握函數(shù)的表示法,能建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。
2. 理解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。掌握判斷函數(shù)這些性質(zhì)的方法。
3. 理解復(fù)合函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。會求給定函數(shù)的復(fù)合函數(shù)和反函數(shù)。
4. 掌握基本初等函數(shù)的性質(zhì)及其圖形。
5. 理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系。
6. 掌握極限的性質(zhì)及四則運(yùn)算法則,會運(yùn)用它們進(jìn)行一些基本的判斷和計(jì)算。
7. 掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限。掌握利用兩個重要極限求極限的方法。
8. 理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。
9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù))。
二、一元函數(shù)微分學(xué)
1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,掌握函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2. 掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的求導(dǎo)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分。
3. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。
4. 會求分段函數(shù)的一階、二階導(dǎo)數(shù)。
5. 會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)
6. 會求反函數(shù)的導(dǎo)數(shù)。
7. 理解并會用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒定理。
8. 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)大值和小值的求法及其簡單應(yīng)用。
9. 會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。
10. 掌握用洛必達(dá)法則求未定式極限的方法。
11. 了解曲率和曲率半徑的概念,會計(jì)算曲率和曲率半徑。
三、一元函數(shù)積分學(xué)
1. 理解原函數(shù)的概念,理解不定積分和定積分的概念。
2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理。掌握牛頓-萊布尼茨公式。掌握不定積分和定積分的換元積分法與分部積分法。
3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。
4. 理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù)。
5. 理解廣義積分(無窮限積分、瑕積分)的概念,掌握無窮限積分、瑕積分的收斂性判別法,會計(jì)算一些簡單的廣義積分。
6. 掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值。
四、向量代數(shù)和空間解析幾何
1. 熟悉空間直角坐標(biāo)系,理解向量及其模的概念。
2. 掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積),了解兩個向量垂直、平行的條件。
3. 理解向量在軸上的投影,了解投影定理及投影的運(yùn)算。理解方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。
4. 掌握平面方程和空間直線方程及其求法。
5. 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問題。
6. 會求空間兩點(diǎn)間的距離、點(diǎn)到直線的距離以及點(diǎn)到平面的距離。
7. 了解空間曲線方程和曲面方程的概念。
8. 了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。
9. 了解常用二次曲面的方程及其圖形。
五、多元函數(shù)微分學(xué)
1. 理解多元函數(shù)的概念、理解二元函數(shù)的幾何意義。
2. 理解二元函數(shù)的極限與連續(xù)性的概念及基本運(yùn)算性質(zhì),了解二元函數(shù)累次極限和極限的關(guān)系 會判斷二元函數(shù)在已知點(diǎn)處極限的存在性和連續(xù)性 了解有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
3. 理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念 了解二元函數(shù)可微、偏導(dǎo)數(shù)存在及連續(xù)的關(guān)系,會求偏導(dǎo)數(shù)和全微分,了解二元函數(shù)兩個混合偏導(dǎo)數(shù)相等的條件 了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。
4. 掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法。
5. 掌握隱函數(shù)的求導(dǎo)法則。
6. 理解方向?qū)?shù)與梯度的概念并掌握其計(jì)算方法。
7. 理解曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。
8. 了解二元函數(shù)的二階泰勒公式。
9. 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的大值、小值,并會解決一些簡單的應(yīng)用問題。
10. 了解全微分在近似計(jì)算中的應(yīng)用
六、多元函數(shù)積分學(xué)
1. 理解二重積分、三重積分的概念,掌握重積分的性質(zhì)。
2. 掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),會計(jì)算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)),掌握二重積分的換元法。
3. 理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。
4. 掌握計(jì)算兩類曲線積分的方法。
5. 掌握格林公式,掌握平面曲線積分與路徑無關(guān)的條件,會求全微分的原函數(shù)。
6. 了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計(jì)算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計(jì)算曲面、曲線積分。
7. 了解散度、旋度的概念,并會計(jì)算。
8. 了解含參變量的積分和萊布尼茨公式。
9. 會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、曲面的面積、物體的體積、曲線的弧長、物體的質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等)。
七、無窮級數(shù)
1. 理解常數(shù)項(xiàng)級數(shù)的收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件
2. 掌握無窮級數(shù)的收斂與發(fā)散的條件。
3. 掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。
4. 掌握交錯級數(shù)的萊布尼茨判別法。
5. 了解任意項(xiàng)級數(shù)的絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。
6. 了解函數(shù)項(xiàng)級數(shù)的收斂域及和函數(shù)的概念。
7. 理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。
8. 了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)微分和逐項(xiàng)積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項(xiàng)級數(shù)的和。
9. 了解函數(shù)展開為泰勒級數(shù)的充分必要條件。
10. 掌握一些常見函數(shù)如ex、sin x、cos x、ln(1+x)和(1+x)α等的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。
11. 會利用函數(shù)的冪級數(shù)展開式進(jìn)行近似計(jì)算。
12. 了解傅里葉級數(shù)的概念和狄利克雷定理,會將定義在[-l,l]上的函數(shù)展開為傅里葉級數(shù),會將定義在[0,l]上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會將周期為2l的函數(shù)展開為傅里葉級數(shù)。
13. 了解函數(shù)項(xiàng)級數(shù)的一致收斂性及一致收斂的函數(shù)項(xiàng)級數(shù)的性質(zhì),會判斷函數(shù)項(xiàng)級數(shù)的一致收斂性。
八、常微分方程
1. 掌握微分方程及其階、解、通解、初始條件和特解等概念。
2. 掌握變量可分離的微分方程及一階線性微分方程的解法。
3. 會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程。
4. 會用降階法解下列方程:y(n)=f(x),y”=f(x,y’)和y”=f(y,y’)
5. 理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。了解解二階非齊次線性微分方程的常數(shù)變易法。
6. 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。
7. 會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。
8. 會解歐拉方程。
9. 了解微分方程的冪級數(shù)解法。
10. 了解簡單的常系數(shù)線性微分方程組的解法。
11. 會用微分方程解決一些簡單的應(yīng)用問題。
參考書:
《高等數(shù)學(xué)(上、下冊)》(第五版),同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)系主編,高等教育出版社,2002年。
一、函數(shù)、極限、連續(xù)
1. 理解函數(shù)的概念,掌握函數(shù)的表示法,能建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。
2. 理解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。掌握判斷函數(shù)這些性質(zhì)的方法。
3. 理解復(fù)合函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。會求給定函數(shù)的復(fù)合函數(shù)和反函數(shù)。
4. 掌握基本初等函數(shù)的性質(zhì)及其圖形。
5. 理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系。
6. 掌握極限的性質(zhì)及四則運(yùn)算法則,會運(yùn)用它們進(jìn)行一些基本的判斷和計(jì)算。
7. 掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限。掌握利用兩個重要極限求極限的方法。
8. 理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。
9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù))。
二、一元函數(shù)微分學(xué)
1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,掌握函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2. 掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的求導(dǎo)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分。
3. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。
4. 會求分段函數(shù)的一階、二階導(dǎo)數(shù)。
5. 會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)
6. 會求反函數(shù)的導(dǎo)數(shù)。
7. 理解并會用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒定理。
8. 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)大值和小值的求法及其簡單應(yīng)用。
9. 會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。
10. 掌握用洛必達(dá)法則求未定式極限的方法。
11. 了解曲率和曲率半徑的概念,會計(jì)算曲率和曲率半徑。
三、一元函數(shù)積分學(xué)
1. 理解原函數(shù)的概念,理解不定積分和定積分的概念。
2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理。掌握牛頓-萊布尼茨公式。掌握不定積分和定積分的換元積分法與分部積分法。
3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。
4. 理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù)。
5. 理解廣義積分(無窮限積分、瑕積分)的概念,掌握無窮限積分、瑕積分的收斂性判別法,會計(jì)算一些簡單的廣義積分。
6. 掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值。
四、向量代數(shù)和空間解析幾何
1. 熟悉空間直角坐標(biāo)系,理解向量及其模的概念。
2. 掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積),了解兩個向量垂直、平行的條件。
3. 理解向量在軸上的投影,了解投影定理及投影的運(yùn)算。理解方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。
4. 掌握平面方程和空間直線方程及其求法。
5. 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問題。
6. 會求空間兩點(diǎn)間的距離、點(diǎn)到直線的距離以及點(diǎn)到平面的距離。
7. 了解空間曲線方程和曲面方程的概念。
8. 了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。
9. 了解常用二次曲面的方程及其圖形。
五、多元函數(shù)微分學(xué)
1. 理解多元函數(shù)的概念、理解二元函數(shù)的幾何意義。
2. 理解二元函數(shù)的極限與連續(xù)性的概念及基本運(yùn)算性質(zhì),了解二元函數(shù)累次極限和極限的關(guān)系 會判斷二元函數(shù)在已知點(diǎn)處極限的存在性和連續(xù)性 了解有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
3. 理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念 了解二元函數(shù)可微、偏導(dǎo)數(shù)存在及連續(xù)的關(guān)系,會求偏導(dǎo)數(shù)和全微分,了解二元函數(shù)兩個混合偏導(dǎo)數(shù)相等的條件 了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。
4. 掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法。
5. 掌握隱函數(shù)的求導(dǎo)法則。
6. 理解方向?qū)?shù)與梯度的概念并掌握其計(jì)算方法。
7. 理解曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。
8. 了解二元函數(shù)的二階泰勒公式。
9. 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的大值、小值,并會解決一些簡單的應(yīng)用問題。
10. 了解全微分在近似計(jì)算中的應(yīng)用
六、多元函數(shù)積分學(xué)
1. 理解二重積分、三重積分的概念,掌握重積分的性質(zhì)。
2. 掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),會計(jì)算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)),掌握二重積分的換元法。
3. 理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。
4. 掌握計(jì)算兩類曲線積分的方法。
5. 掌握格林公式,掌握平面曲線積分與路徑無關(guān)的條件,會求全微分的原函數(shù)。
6. 了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計(jì)算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計(jì)算曲面、曲線積分。
7. 了解散度、旋度的概念,并會計(jì)算。
8. 了解含參變量的積分和萊布尼茨公式。
9. 會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、曲面的面積、物體的體積、曲線的弧長、物體的質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等)。
七、無窮級數(shù)
1. 理解常數(shù)項(xiàng)級數(shù)的收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件
2. 掌握無窮級數(shù)的收斂與發(fā)散的條件。
3. 掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。
4. 掌握交錯級數(shù)的萊布尼茨判別法。
5. 了解任意項(xiàng)級數(shù)的絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。
6. 了解函數(shù)項(xiàng)級數(shù)的收斂域及和函數(shù)的概念。
7. 理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。
8. 了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)微分和逐項(xiàng)積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項(xiàng)級數(shù)的和。
9. 了解函數(shù)展開為泰勒級數(shù)的充分必要條件。
10. 掌握一些常見函數(shù)如ex、sin x、cos x、ln(1+x)和(1+x)α等的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。
11. 會利用函數(shù)的冪級數(shù)展開式進(jìn)行近似計(jì)算。
12. 了解傅里葉級數(shù)的概念和狄利克雷定理,會將定義在[-l,l]上的函數(shù)展開為傅里葉級數(shù),會將定義在[0,l]上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會將周期為2l的函數(shù)展開為傅里葉級數(shù)。
13. 了解函數(shù)項(xiàng)級數(shù)的一致收斂性及一致收斂的函數(shù)項(xiàng)級數(shù)的性質(zhì),會判斷函數(shù)項(xiàng)級數(shù)的一致收斂性。
八、常微分方程
1. 掌握微分方程及其階、解、通解、初始條件和特解等概念。
2. 掌握變量可分離的微分方程及一階線性微分方程的解法。
3. 會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程。
4. 會用降階法解下列方程:y(n)=f(x),y”=f(x,y’)和y”=f(y,y’)
5. 理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。了解解二階非齊次線性微分方程的常數(shù)變易法。
6. 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。
7. 會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。
8. 會解歐拉方程。
9. 了解微分方程的冪級數(shù)解法。
10. 了解簡單的常系數(shù)線性微分方程組的解法。
11. 會用微分方程解決一些簡單的應(yīng)用問題。
參考書:
《高等數(shù)學(xué)(上、下冊)》(第五版),同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)系主編,高等教育出版社,2002年。