1.初中數(shù)學課件
教學目的
1、使學生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準確判斷一個數(shù)是有理數(shù)還是無理數(shù)。
2、使學生能了解實數(shù)絕對值的意義。
3、使學生能了解數(shù)軸上的點具有一一對應關系。
4、由實數(shù)的分類,滲透數(shù)學分類的思想。
5、由實數(shù)與數(shù)軸的一一對應,滲透數(shù)形結合的思想。
教學分析
重點:無理數(shù)及實數(shù)的概念。
難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應。
教學過程
一、復習
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。
判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。
2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實數(shù)的相反數(shù):
5、實數(shù)的絕對值:
6、實數(shù)的運算
講解例1,加上(3)若|x|=π(4)若|x-1|=,那么x的值是多少?
例2,判斷題:
。1)任何實數(shù)的偶次冪是正實數(shù)。()
。2)在實數(shù)范圍內,若|x|=|y|則x=y。()
。3)0是小的實數(shù)。()
。4)0是絕對值小的實數(shù)。()
解:略
三、練習
P148練習:3、4、5、6。
四、小結
1、今天我們學習了實數(shù),請同學們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關系,二是對實數(shù)兩種不同的分類要清楚。
2、要對應有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質,來理解在實數(shù)中的運用。
五、作業(yè)
1、P150習題A:3。
2、基礎訓練:同步練習1。
2.初中數(shù)學課件
一、教材分析
(一)教材地位
這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
。ǘ┙虒W目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。
。ㄈ┙虒W重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析:
學情分析:七年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強。
教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、教學過程設計
1、創(chuàng)設情境,提出問題
2、實驗操作,模型構建
3、回歸生活,應用新知
4、知識拓展,鞏固深化
5、感悟收獲,布置作業(yè)
。ㄒ唬﹦(chuàng)設情境提出問題
。1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國際數(shù)學的一枚紀念郵票大會會標設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值。
。2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2、5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。
(二)實驗操作模型構建
1、等腰直角三角形(數(shù)格子)
2、一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結勾股定理。
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊——一般的認知規(guī)律。
(三)回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。
四、知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。
基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基。通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維。
情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。
五、感悟收獲布置作業(yè):
這節(jié)課你的收獲是什么?
作業(yè):
1、課本習題
2、12、搜集有關勾股定理證明的資料。
六、板書設計:探索勾股定理
七、設計說明:
1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法。
2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。
3.初中數(shù)學課件
一、教材分析:
勾股定理是學生在已經(jīng)掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中重要的'定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學重點:勾股定理的證明和應用。
三、教學難點:勾股定理的證明。
四、教法和學法:教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲 望和興趣,組織學生活動,讓學生主動參與學習全過程。切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲 望。
五、教學程序:本節(jié)內容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
。ㄒ唬﹦(chuàng)設情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
。ǘ┏醪礁兄斫饨滩
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質疑解難討論歸納:
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,后,師生共同歸納,形成一致意見,終解決疑難。
。ㄋ模╈柟叹毩晱娀岣
1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結練習反饋
引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
4.初中數(shù)學課件
教學目標:
利用數(shù)形結合的數(shù)學思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。
教學重點和難點:
運用數(shù)形結合的思想方法進行解二次函數(shù),這是重點也是難點。
教學過程:
(一)引入:
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
(1)如何畫圖
。2)頂點、圖象與坐標軸的交點
。3)所形成的三角形以及四邊形的面積
(4)對稱軸
從上面的問題導入今天的課題二次函數(shù)中的圖象與性質。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE=SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
(三)提高練習
根據(jù)我們學校人人皆知的船模特色項目設計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質在解題中的作用。
。ㄋ模┳寣W生討論小結
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標平面內,點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
。1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y=x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域。
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內實際橋長(計算結果精確到1米)。
5.初中數(shù)學課件
一學期的工作結束了,可以說緊張忙碌卻收獲多多;仡欉@學期的工作,我教九(4)班的數(shù)學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經(jīng)驗,吸取教訓,使以后的工作能夠有效、有序地進行,現(xiàn)將教學所得總結如下:
一、在備課方面
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。
二、在教學過程方面
在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學習任何知識的佳途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解深刻,也容易掌握其中的內在規(guī)律、性質和聯(lián)系!敝挥谐浞职l(fā)揮學生的主體作用,讓學生人人參與,才能大限度地促進學生的發(fā)展。但還是難免受傳統(tǒng)教學觀念的影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學!啊钡慕虒W模式下,才開始進一步嘗試,并在不斷的嘗試中總結經(jīng)驗。
三、工作中存在的問題
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發(fā)不足。
3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導
4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態(tài)度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數(shù)。導致了教學中的盲目性。
四、今后努力的方向
1)、加強學習,學習新教學模式下新的教學思想。
2)、熟讀初一到初三的數(shù)學教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。
4)、加強轉差培優(yōu)力度。
5)、加強教學反思,加大教學投入。
一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業(yè)務水平。